Impact of intergranular phase variations on the anomalous Nernst effect in Nd-Fe-B permanent magnets

Zulfa Hilmi Kautsar , Babu Madavali , Takamasa Hirai , Ken-ichi Uchida , Hossein Sepehri-Amin

Energy Materials ›› 2025, Vol. 5 ›› Issue (10) : 500129

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (10) :500129 DOI: 10.20517/energymater.2025.26
Article

Impact of intergranular phase variations on the anomalous Nernst effect in Nd-Fe-B permanent magnets

Author information +
History +
PDF

Abstract

Improving the anomalous Nernst coefficient (SANE) in permanent magnets is essential for increasing the power density in transverse thermoelectric generators, which use permanent magnets to operate the anomalous Nernst effect without relying on an external magnetic field. While recent studies indicate that microstructural engineering can affect SANE, the specific relationship between microstructure and SANE in permanent magnets remains underexplored. This study investigates SANE of hot-pressed, hot-deformed, and RE-Cu (RE = Dy-Nd, Nd, and Pr) grain boundary diffusion-processed Nd-Fe-B magnets. The results show that SANE increases by 68%, from -2.6 × 10-7 VK-1 in the hot-pressed state to -4.4 × 10-7 VK-1 after hot-deformation in which grain growth and crystallographic texture are realized without changing the composition of the magnets. SANE further increases to -5.0 × 10-7 VK-1 after grain boundary structure and composition change from thin amorphous phase to thick crystalline phase by grain boundary diffusion of Dy-Nd-Cu alloy. The increase in SANE is found to be primarily due to the reduction of the opposing transverse electric field caused by the Seebeck-effect-induced carrier flow bent by the anomalous Hall effect. Owing to the crystallographic texture formation after hot-deformation, almost the same transverse thermopower as SANE is obtained in the hot-deformed and RE-Cu grain boundary diffusion-processed Nd-Fe-B magnets at a remanence state, i.e., under zero magnetic field. These findings demonstrate that microstructural optimization can effectively enhance the SANE in ultra-fine grained Nd-Fe-B magnets, providing a promising avenue for advancing materials in applications of transverse thermoelectrics.

Keywords

Anomalous Nernst effect / hot-deformed magnets / microstructural engineering / Nd-Fe-B / permanent magnets

Cite this article

Download citation ▾
Zulfa Hilmi Kautsar, Babu Madavali, Takamasa Hirai, Ken-ichi Uchida, Hossein Sepehri-Amin. Impact of intergranular phase variations on the anomalous Nernst effect in Nd-Fe-B permanent magnets. Energy Materials, 2025, 5(10): 500129 DOI:10.20517/energymater.2025.26

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ando F,Uchida K.Permanent-magnet-based transverse thermoelectric generator with high fill factor driven by anomalous Nernst effect.APL Energy2024;2:016103

[2]

He R,Nielsch K.Thermoelectric devices: a review of devices, architectures, and contact optimization.Adv Mater Technol2018;3:1700256

[3]

Ying P,Nielsch K.Geometrical optimization and thermal-stability characterization of Te-free thermoelectric modules based on MgAgSb/Mg3(Bi,Sb)2.Small2022;18:2201183

[4]

Bu Z,Hu Y.An over 10% module efficiency obtained using non-Bi2Te3 thermoelectric materials for recovering heat of <600 K.Energy Environ Sci2021;14:6506-13

[5]

Ando F,Matsumura Y.Dual-boost thermoelectric power generation in a GeTe/Mg3Sb2-based module.Mater Today Phys2023;36:101156

[6]

Uchida K,Sakuraba Y.Transverse thermoelectric generation using magnetic materials.Appl Phys Lett2021;118:140504

[7]

Yamauchi T,Kurokawa Y.Anomalous Nernst effect dependence on composition in Fe100-XRhX alloys.Jpn J Appl Phys2022;61:SC1019

[8]

Hamada Y,Yamauchi T,Yuasa H.Anomalous Nernst effect in Fe-Si alloy films.Appl Phys Lett2021;119:152404

[9]

Sakai A,Nugroho AA.Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal.Nat Phys2018;14:1119-24

[10]

Reichlova H,Beckert S.Large anomalous Nernst effect in thin films of the Weyl semimetal Co2MnGa.Appl Phys Lett2018;113:212405

[11]

Ikhlas M,Koretsune T.Large anomalous Nernst effect at room temperature in a chiral antiferromagnet.Nat Phys2017;13:1085-90

[12]

Li X,Ding L.Anomalous Nernst and Righi-Leduc Effects in Mn3Sn: Berry curvature and entropy flow.Phys Rev Lett2017;119:056601

[13]

Li M,Zhao Y.Large anomalous Nernst effects at room temperature in Fe3Pt thin films.Adv Mater2023;35:2301339

[14]

He B,Boona SR.Large magnon-induced anomalous Nernst conductivity in single-crystal MnBi.Joule2021;5:3057-67 PMCID:PMC8604385

[15]

Xu L,Ding L.Anomalous transverse response of Co2MnGa and universality of the room-temperature $ \alpha_{i j}^{A} / \sigma_{i j_{\omega}}^{A} $ ratio across topological magnets.Phys Rev B2020;101:180404

[16]

Park G,Schlitz R.Thickness dependence of the anomalous Nernst effect and the Mott relation of Weyl semimetal Co2MnGa thin films.Phys Rev B2020;101:060406

[17]

Sakai A,Koretsune T.Iron-based binary ferromagnets for transverse thermoelectric conversion.Nature2020;581:53-7

[18]

Cox CDW,Cropper MD.Anomalous Nernst effect in Co2MnSi thin films.J Phys D:Appl Phys2020;53:035005

[19]

Khadka D,Hurtado Parra S.Anomalous Hall and Nernst effects in epitaxial films of topological kagome magnet Fe3Sn2.Phys Rev Mater2020;4:084203

[20]

Wuttke C,Sykora S.Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge.Phys Rev B2019;100:085111

[21]

Guin SN,Noky J.Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa.NPG Asia Mater2019;11:116

[22]

Uchida K,Ando F.Hybrid transverse magneto-thermoelectric cooling in artificially tilted multilayers.Adv Energy Mater2024;14:2302375

[23]

Hirai T,Sepehri-Amin H.Hybridizing anomalous Nernst effect in artificially tilted multilayer based on magnetic topological material.Nat Commun2024;15:9643 PMCID:PMC11564512

[24]

Coey J.Permanent magnets: plugging the gap.Scr Mater2012;67:524-9

[25]

Coey J.Perspective and prospects for rare earth permanent magnets.Engineering2020;6:119-31

[26]

Gutfleisch O,Brück E,Sankar SG.Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient.Adv Mater2011;23:821-42

[27]

Miura A,Masuda K.Observation of anomalous Ettingshausen effect and large transverse thermoelectric conductivity in permanent magnets.Appl Phys Lett2019;115:222403

[28]

Sakuraba Y,Sakuma A.Giant anomalous Nernst effect in the Co2MnAl1-xSix Heusler alloy induced by Fermi level tuning and atomic ordering.Phys Rev B2020;101:134407

[29]

Fujiwara K,Abe H.Berry curvature contributions of kagome-lattice fragments in amorphous Fe-Sn thin films.Nat Commun2023;14:3399

[30]

Gautam R,Alasli A.Creation of flexible spin-caloritronic material with giant transverse thermoelectric conversion by nanostructure engineering.Nat Commun2024;15:2184 PMCID:PMC10973454

[31]

Wang Z,Zhang J.Correlation between the microstructure and magnetic configuration in coarse-grain inhibited hot-deformed Nd-Fe-B magnets.Acta Mater2019;167:103-11

[32]

Ramesh R,Ma BM.Magnetization reversal in nucleation controlled magnets. II. Effect of grain size and size distribution on intrinsic coercivity of Fe-Nd-B magnets.J Appl Phys1988;64:6416-23

[33]

Nothnagel P,Eckert D.The influence of particle size on the coercivity of sintered NdFeB magnets.J Magn Magn Mater1991;101:379-81

[34]

Lv M,Zhang W.Progress on modification of microstructures and magnetic properties of Nd-Fe-B magnets by the grain boundary diffusion engineering.J Magn Magn Mater2021;517:167278

[35]

Cui W,Hono K.Microstructure optimization to achieve high coercivity in anisotropic Nd-Fe-B thin films.Acta Mater2011;59:7768-75

[36]

Lee R,Schaffel N.Processing of neodymium-iron-boron melt-spun ribbons to fully dense magnets.IEEE Trans Magn1985;21:1958-63

[37]

Croat J.Manufacture of Nd Fe B permanent magnets by rapid solidification.J Less Common Met1989;148:7-15

[38]

Liu J,Ohkubo T,Hattori A.Microstructure evolution of hot-deformed Nd-Fe-B anisotropic magnets.J Appl Phys2014;115:17A744

[39]

Sepehri-Amin H,Nagashima S.High-coercivity ultrafine-grained anisotropic Nd-Fe-B magnets processed by hot deformation and the Nd-Cu grain boundary diffusion process.Acta Mater2013;61:6622-34

[40]

Sepehri-Amin H,Ohkubo T.Microstructure and temperature dependent of coercivity of hot-deformed Nd-Fe-B magnets diffusion processed with Pr-Cu alloy.Acta Mater2015;99:297-306

[41]

Sepehri-Amin H,Ohkubo T,Hattori A.Enhancement of coercivity of hot-deformed Nd-Fe-B anisotropic magnet by low-temperature grain boundary diffusion of Nd60Dy20Cu20 eutectic alloy.Scr Mater2013;69:647-50

[42]

Bahl CRH.Estimating the demagnetization factors for regular permanent magnet pieces.AIP Advances2021;11:075028

[43]

Breitenstein O,Schubert MC.Lock-in Thermography. Springer International Publishing, Cham, 2018.

[44]

Uchida KI,Iguchi R.Observation of anisotropic magneto-Peltier effect in nickel.Nature2018;558:95-9

[45]

Miura A,Hirai T.High-temperature dependence of anomalous Ettingshausen effect in SmCo5-type permanent magnets.Appl Phys Lett2020;117:082408

[46]

Wid O,Müller A,Parkin SS.Investigation of the unidirectional spin heat conveyer effect in a 200 nm thin yttrium iron garnet film.Sci Rep2016;6:28233 PMCID:PMC4911583

[47]

Seki T,Takanashi K.Visualization of anomalous Ettingshausen effect in a ferromagnetic film: direct evidence of different symmetry from spin Peltier effect.Appl Phys Lett2018;112:152403

[48]

Das R,Uchida K.Systematic investigation of anisotropic Magneto-Peltier effect and anomalous Ettingshausen effect in Ni thin films.Phys Rev Appl2019;11:.034022

[49]

Campos MF, Romero SA, de Castro JA. Estimation of texture and anisotropy field in a NdDyFeCoB magnet by magnetic measurements at the perpendicular direction.J Magn Magn Mater2022;564:170119

[50]

Lee Y,Shih C,Chang H.Coercivity enhancement in hot deformed Nd2Fe14B-type magnets by doping low-melting RCu alloys (R = Nd, Dy, Nd + Dy).J Magn Magn Mater2017;439:1-5

[51]

Cui BZ,Marinescu M,Hadjipanayis GC.Textured Nd2Fe14B flakes with enhanced coercivity.J Appl Phys2012;111:07A735

[52]

Hirosawa S,Yamamoto H,Sagawa M.Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals.J Appl Phys1986;59:873-9

[53]

Hu C,Fu C,Zhu T.Carrier grain boundary scattering in thermoelectric materials.Energy Environ Sci2022;15:1406-22

[54]

Dong H,Melnik R.Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials.Sci Rep2014;4:7037 PMCID:PMC4229661

[55]

Cahill DG,Pohl RO.Lower limit to the thermal conductivity of disordered crystals.Phys Rev B1992;46:6131

[56]

Cahill DG.Lattice vibrations and heat transport in crystals and glasses.Annu Rev Phys Chem1988;39:93-121

[57]

Sakuma A,Furuuchi T,Hono K.Magnetism of Nd-Fe films as a model of grain boundary phase in Nd-Fe-B permanent magnets.Appl Phys Express2016;9:013002

[58]

Stankiewicz J.Magnetotransport properties of Nd2Fe14B.Phys Rev B1999;59:1152

[59]

Ding L,Xu L.Intrinsic anomalous Nernst effect amplified by disorder in a half-metallic semimetal.Phys Rev X2019;9:041061

[60]

Behnia K.Nernst effect in metals and superconductors: a review of concepts and experiments.Rep Prog Phys2016;79:046502

[61]

Zhou W,Sakuraba Y.Origin of negative anomalous Nernst thermopower in Mn-Ga ordered alloys.Appl Phys Lett2021;118:152406

PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

/