MoS2-doped polyvinyl alcohol nanofiber films via electrospinning for high-performance triboelectric nanogenerators

Chuanrui Chen , Jiaqi Lu , Dinku Hazarika , Kaihang Zhang , Jianhui Wu , Jiafeng Ni , Rui Wan , Liangquan Xu , Jie Li , Xinyu Cai , Xi Yang , Fengling Zhuo , Hao Jin , Zhi Ye , Shurong Dong , Jikui Luo

Energy Materials ›› 2026, Vol. 6 ›› Issue (1) : 600007

PDF
Energy Materials ›› 2026, Vol. 6 ›› Issue (1) :600007 DOI: 10.20517/energymater.2025.157
Article

MoS2-doped polyvinyl alcohol nanofiber films via electrospinning for high-performance triboelectric nanogenerators

Author information +
History +
PDF

Abstract

Electrospinning enables the fabrication of nanofiber films with large active surface area, high porosity, and controllable filler orientation, offering distinct advantages for fabricating high-performance triboelectric nanogenerators (TENGs). Here, we develop MoS2-doped electrospun polyvinyl alcohol (PVA) films for TENG fabrication and reveal the underlying mechanisms of their enhanced triboelectric performance. Compared with spin-coated films, electrospun films intrinsically deliver higher output due to their fibrous morphology, while incorporation of MoS2 nanosheets further improves the performance. TENGs with the optimized 2 wt.% MoS2-PVA electrospun film reached 994.0 V, 111.0 mA·m-2, and 136.3 μC·m-2, corresponding to 3.8, 3.8, and 3.0 fold enhancements over the spin-coated pristine PVA TENG. Mechanistic studies by experiments and theoretical analysis showed that this remarkable enhancement arises from the combined effects of morphology-driven enlargement of effective contact area, MoS2-induced surface charge modulation, and nanosheet alignment-induced piezoelectric polarization. Detailed material characterizations, COMSOL simulations, and molecular dynamic calculations provide quantitative and atomistic insights into these contributions. These results establish a coherent structure-property-performance relationship and provide design rules for durable, biocompatible, and high-output TENGs, highlighting their promise for wearable energy harvesting and self-powered sensing applications.

Keywords

Triboelectric nanogenerator / electrospinning / MoS2 nanosheets / polyvinyl alcohol / surface potential / wearable energy harvesting

Cite this article

Download citation ▾
Chuanrui Chen, Jiaqi Lu, Dinku Hazarika, Kaihang Zhang, Jianhui Wu, Jiafeng Ni, Rui Wan, Liangquan Xu, Jie Li, Xinyu Cai, Xi Yang, Fengling Zhuo, Hao Jin, Zhi Ye, Shurong Dong, Jikui Luo. MoS2-doped polyvinyl alcohol nanofiber films via electrospinning for high-performance triboelectric nanogenerators. Energy Materials, 2026, 6(1): 600007 DOI:10.20517/energymater.2025.157

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng T,Wang ZL.Triboelectric nanogenerators.Nat Rev Methods Primers2023;3:220

[2]

Wang Y,Wang ZL.Triboelectric nanogenerators as flexible power sources.NPJ Flex Electron2017;1:7

[3]

Zhu G,Chen J,Lin Wang Z.Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications.Nano Energy2015;14:126-38

[4]

Pu X,Chen J.Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator.Sci Adv2017;3:e1700694 PMCID:PMC5533541

[5]

Luo J,Wang ZL.The triboelectric nanogenerator as an innovative technology toward intelligent sports.Adv Mater2021;33:e2004178

[6]

Kim WG,Tcho IW,Kim MS.Triboelectric nanogenerator: structure, mechanism, and applications.ACS Nano2021;15:258-87

[7]

Niu S,Lin L.Theoretical study of contact-mode triboelectric nanogenerators as an effective power source.Energy Environ Sci2013;6:3576

[8]

Liu Z,Shi B,Wang ZL.Wearable and implantable triboelectric nanogenerators.Adv Funct Mater2019;29:1808820

[9]

Hinchet R,Ryu H.Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology.Science2019;365:491-4

[10]

Han JH.Monolithically integrated ionic triboelectric nanogenerators for deformable energy harvesting and self powered sensing.NPJ Flex Electron2025;9:491

[11]

Ge X,Yan F.Development and applications of electrospun nanofiber-based triboelectric nanogenerators.Nano Energy2023;112:108444

[12]

Tao D,Chen A,Eginligil M.Electro-spun nanofibers-based triboelectric nanogenerators in wearable electronics: status and perspectives.NPJ Flex Electron2025;9:357

[13]

Li Z,Shen J,Yu J.All-fiber structured electronic skin with high elasticity and breathability.Adv Funct Mater2020;30:1908411

[14]

Dong K,Wang ZL.Fiber/Fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence.Adv Mater2020;32:e1902549

[15]

Chen G,Chen J.Textile triboelectric nanogenerators for wearable pulse wave monitoring.Trends Biotechnol2021;39:1078-92

[16]

Kwak SS,Kim S.Textile-based triboelectric nanogenerators for self-powered wearable electronics.Adv Funct Mater2019;29:1804533

[17]

Zhang R.Material choices for triboelectric nanogenerators: a critical review.EcoMat2020;2:e12062

[18]

Dharmasena R.Towards optimized triboelectric nanogenerators.Nano Energy2019;62:530-49

[19]

Dai Y,Xu T,Xiong Y.High-performance triboelectric nanogenerator based on electrospun polyvinylidene fluoride-graphene oxide nanosheet composite nanofibers.Energy Tech2023;11:2300426

[20]

Yang J,Meng Y.High-performance flexible wearable triboelectric nanogenerator sensor by β-phase polyvinylidene fluoride polarization.ACS Appl Electron Mater2024;6:1385-95

[21]

Chen X,Yao N.1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers.Nano Lett2010;10:2133-7

[22]

Han SA,Lin J,Kim JH.Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials.Nano Energy2019;57:680-91

[23]

Ghorbanzadeh S.Advances in MXene-based triboelectric nanogenerators.Nano Energy2024;125:109558

[24]

Zhou Y,Li S,Shi Y.Triboelectric nanogenerators based on 2D materials: from materials and devices to applications.Micromachines2023;14:1043 PMCID:PMC10223638

[25]

Mohan R.The future of energy harvesting: a brief review of MXenes-based triboelectric nanogenerators.Polym Adv Techs2023;34:3193-209

[26]

Sardana S,Mahajan A.MXene-functionalized KNN dielectric nanofillers incorporated in PVA nanofibers for high-performance triboelectric nanogenerator.Appl Phys Lett2023;122:162902

[27]

Jiang C,Li X.All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets.Nano Energy2019;59:268-76

[28]

Liu Y,Fu Q.Enhancement of triboelectric charge density by chemical functionalization.Adv Funct Mater2020;30:2004714

[29]

Amrutha B,Woo I,Prabu AA.Performance optimization of MoS2-doped PVDF-HFP nanofiber triboelectric nanogenerator as sensing technology for smart cities.Appl Mater Today2024;41:102503

[30]

Gajula P,Woo I,Bae JW.Triboelectric touch sensor array system for energy generation and self-powered human-machine interfaces based on chemically functionalized, electrospun rGO/Nylon-12 and micro-patterned Ecoflex/MoS2 films.Nano Energy2024;121:109278

[31]

Radacsi N,Chisholm CRI.Spontaneous formation of nanoparticles on electrospun nanofibres.Nat Commun2018;9:4740 PMCID:PMC6226441

[32]

Higashi S,Matsubara M,Beniya A.Dynamic viscosity recovery of electrospinning solution for stabilizing elongated ultrafine polymer nanofiber by TEMPO-CNF.Sci Rep2020;10:13427 PMCID:PMC7417572

[33]

Vattikuti SVP,Han X.Synthesis and characterization of molybdenum disulfide nanoflowers and nanosheets: nanotribology.J Nanomater2015;2015:710462

[34]

Chen X,del Rio JS.A facile and robust route to polyvinyl alcohol-based triboelectric nanogenerator containing flame-retardant polyelectrolyte with improved output performance and fire safety.Nano Energy2021;81:105656

[35]

Zhou K,Bao C.Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties.RSC Adv2012;2:11695

[36]

Lee C,Brus LE,Hone J.Anomalous lattice vibrations of single- and few-layer MoS2.ACS Nano2010;4:2695-700

[37]

Wu W,Li Y.Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics.Nature2014;514:470-4

[38]

Hu Y.Progress in textile-based triboelectric nanogenerators for smart fabrics.Nano Energy2019;56:16-24

[39]

Cheon S,Kim H.High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride-silver nanowire composite nanofibers.Adv Funct Mater2018;28:1703778

[40]

Li Y,Xiao S.Visualization and standardized quantification of surface charge density for triboelectric materials.Nat Commun2024;15:6004 PMCID:PMC11255240

[41]

Wang ZL.Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.ACS Nano2013;7:9533-57

[42]

Hussain SZ,Sadeque MSB,Kalimuldina G.Piezoelectric-triboelectric hybrid nanogenerator for energy harvesting and self-powered sensing applications.Small2025;21:e2504626 PMCID:PMC12571219

[43]

Zhang J,Boyer C.Recent developments of hybrid piezo-triboelectric nanogenerators for flexible sensors and energy harvesters.Nanoscale Adv2021;3:5465-86 PMCID:PMC9418817

[44]

Kuang H,Huang S.Piezoelectric boron nitride nanosheets for high performance energy harvesting devices.Nano Energy2021;80:105561

[45]

Zhang C,Xuan W.Conjunction of triboelectric nanogenerator with induction coils as wireless power sources and self-powered wireless sensors.Nat Commun2020;11:58 PMCID:PMC6940365

PDF

52

Accesses

0

Citation

Detail

Sections
Recommended

/