Conjugated-engineering covalent organic framework for synergistic artificial photosynthesis of hydrogen peroxide and high-value chemicals

Xiangfeng Lin , Xiaowei Cai , Hankun Zheng , Jiaxian Zheng , Abdullahi Bello Umar , Zhanhui Yuan

Energy Materials ›› 2025, Vol. 5 ›› Issue (12) : 500148

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (12) :500148 DOI: 10.20517/energymater.2025.143
Communication

Conjugated-engineering covalent organic framework for synergistic artificial photosynthesis of hydrogen peroxide and high-value chemicals

Author information +
History +
PDF

Abstract

Artificial photosynthesis holds great promise for the production of hydrogen peroxide (H2O2), an environmentally friendly oxidant and clean fuel. However, the synergistic photosynthesis of H2O2 and high-value chemicals in blue light-emitting diodes (LEDs) has not yet been realized. Herein, we develop a conjugated-engineering covalent organic framework (COF), designated as TANB-Py-COF, which serves as an efficient catalyst in the photosynthesis of H2O2 under blue LEDs. An apparent quantum yield of 7.87% and a H2O2 production rate of 18.32 mmol g-1 h-1 are achieved. In addition, the synergistic photosynthesis of imines via amine-coupling or photooxidation of thioethers is realized with a yield up to 99%. This work establishes a precedent for the development of COF-based photocatalytic strategies for the simultaneous artificial photosynthesis of hydrogen peroxide and high-value chemicals in blue LEDs.

Keywords

Artificial photosynthesis / covalent organic framework / generation of hydrogen peroxide / high-value chemicals

Cite this article

Download citation ▾
Xiangfeng Lin, Xiaowei Cai, Hankun Zheng, Jiaxian Zheng, Abdullahi Bello Umar, Zhanhui Yuan. Conjugated-engineering covalent organic framework for synergistic artificial photosynthesis of hydrogen peroxide and high-value chemicals. Energy Materials, 2025, 5(12): 500148 DOI:10.20517/energymater.2025.143

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Perry SC,Vieira L.Electrochemical synthesis of hydrogen peroxide from water and oxygen.Nat Rev Chem2019;3:442-58

[2]

Sun Y,Strasser P.A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production.Chem Soc Rev2020;49:6605-31

[3]

Freese T,Feringa BL.An organic perspective on photocatalytic production of hydrogen peroxide.Nat Catal2023;6:553-8

[4]

Baur E.Über photolytische bildung von hydroperoxyd.Helv Chim Acta1927;10:901-7

[5]

Hao F,Lv X.Photo-driven quasi-topological transformation exposing highly active nitrogen cation sites for enhanced photocatalytic H2O2 production.Angew Chem Int Ed2023;62:e202315456

[6]

Liao Q,Xu H.Regulating relative nitrogen locations of diazine functionalized covalent organic frameworks for overall H2O2 photosynthesis.Angew Chem Int Ed2023;62:e202310556

[7]

Das P,Thomas A.Solar light driven H2O2 production and selective oxidations using a covalent organic framework photocatalyst prepared by a multicomponent reaction.Angew Chem Int Ed2023;62:e202304349

[8]

Liu R,Yu H.Linkage-engineered donor-acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air.Nat Catal2024;7:195-206

[9]

Cao L,Wang H.Rationally Designed cyclooctatetrathiophene-based porous aromatic frameworks (COTh-PAFs) for efficient photocatalytic hydrogen peroxide production.Angew Chem Int Ed2024;63:e202402095

[10]

Zhou E,Zhang X,Wang Y.Cyanide-based covalent organic frameworks for enhanced overall photocatalytic hydrogen peroxide production.Angew Chem Int Ed2024;63:e202400999

[11]

Yue JY,Pan ZX.Regulating the topology of covalent organic frameworks for boosting overall H2O2 photogeneration.Angew Chem Int Ed2024;63:e202405763

[12]

Dong P,Wu T.Stepwise protonation of three-dimensional covalent organic frameworks for enhancing hydrogen peroxide photosynthesis.Angew Chem Int Ed2024;63:e202405313

[13]

Wu W,Liu S.Pyridine-based covalent organic frameworks with pyridyl-imine structures for boosting photocatalytic H2O2 production via one-step 2e- oxygen reduction.Angew Chem Int Ed2024;63:e202404563

[14]

Li L,Xue Y,Zheng G.Custom-design of strong electron/proton extractor on COFs for efficient photocatalytic H2O2 production.Angew Chem Int Ed2024;63:e202320218

[15]

Zhang X,Chen C.Keto-anthraquinone covalent organic framework for H2O2 photosynthesis with oxygen and alkaline water.Nat Commun2024;15:2649 PMCID:PMC11258313

[16]

Liu W,Ju P.A Hydrazone-based covalent organic framework as an efficient and reusable photocatalyst for the cross-dehydrogenative coupling reaction of N-aryltetrahydroisoquinolines.ChemSusChem2017;10:664-9

[17]

Zhi Y,Feng X.Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations.J Mater Chem A2017;5:22933-8

[18]

Chen R,Ma Y,Lang X.Designed synthesis of a 2D porphyrin-Based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis.Angew Chem Int Ed2019;58:6430-4

[19]

Wei H,Liang X,Liu H.Selective photooxidation of amines and sulfides triggered by a superoxide radical using a novel visible-light-responsive metal-organic framework.ACS Appl Mater Interfaces2019;11:3016-23

[20]

Li S,Li Y.Fully Conjugated donor-acceptor covalent organic frameworks for photocatalytic oxidative amine coupling and thioamide cyclization.ACS Catal2020;10:8717-26

[21]

He H,Zhai D.A Porphyrin-based covalent organic framework for metal-free photocatalytic aerobic oxidative coupling of amines.Chem Eur J2021;27:14390-5

[22]

Yang F,Xu CC.A covalent organic framework as a photocatalyst for window ledge cross-dehydrogenative coupling reactions.Chem Commun2022;58:1530-3

[23]

Cheng Y,Wu X,Liu X.Persistent radical cation sp2 carbon-covalent organic framework for photocatalytic oxidative organic transformations.Appl Catal B Environ2022;306:121110

[24]

Jiménez-Almarza A,Mas-Ballesté R.Tuning the activity-stability balance of photocatalytic organic materials for oxidative coupling reactions.ACS Appl Mater Interfaces2022;14:16258-68 PMCID:PMC9011354

[25]

Liu M,Li J.Blending aryl ketone in covalent organic frameworks to promote photoinduced electron transfer.J Am Chem Soc2023;145:9198-206

[26]

Liu Y,Chen L.Rational design of a phenothiazine-based donor-acceptor covalent organic framework for enhanced photocatalytic oxidative coupling of amines and cyclization of thioamides.J Mater Chem A2023;11:1208-15

[27]

Kong K,Chen D,Li X.Carbon nitride quantum dots decorated with cyano groups for boosting photocatalytic hydrogen peroxide production.Green Energy Environ2025;10:1551-8

[28]

Liu J,Xiao WY.Constructing donor-acceptor covalent organic frameworks for highly efficient H2O2 photosynthesis coupled with oxidative organic transformations.Angew Chem Int Ed2025;64:e202416240

[29]

Côté AP,Ockwig NW,Matzger AJ.Porous, crystalline, covalent organic frameworks.Science2005;310:1166-70

[30]

Feng X,Jiang D.Covalent organic frameworks.Chem Soc Rev2012;41:6010-22

[31]

Ding SY.Covalent organic frameworks (COFs): from design to applications.Chem Soc Rev2013;42:548-68

[32]

Das S,Ben T.Porous organic materials: strategic design and structure-function correlation.Chem Rev2017;117:1515-63

[33]

Jin Y,Zhang W.Tessellated multiporous two-dimensional covalent organic frameworks.Nat Rev Chem2017;1:0056

[34]

Diercks CS.The atom, the molecule, and the covalent organic framework.Science2017;355:eaal1585

[35]

Zhao W,Liu X.Covalent organic frameworks (COFs): perspectives of industrialization.CrystEngComm2018;20:1613-34

[36]

Prabhakar Vattikuti SV,Zeng J.Pouch-type asymmetric supercapacitor based on nickel-cobalt metal-organic framework.Materials2023;16:2423

[37]

Wei PF,Wang ZP.Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis.J Am Chem Soc2018;140:4623-31

[38]

Kang X,Han X,Liu Y.Rational synthesis of interpenetrated 3D covalent organic frameworks for asymmetric photocatalysis.Chem Sci2019;11:1494-502 PMCID:PMC8148036

[39]

Wang K,Yuan C,Liu Y.Porous 2D and 3D covalent organic frameworks with dimensionality-dependent photocatalytic activity in promoting radical ring-opening polymerization.Angew Chem Int Ed2021;60:19466-76

[40]

Wu CJ,Li TR.Natural sunlight photocatalytic synthesis of benzoxazole-bridged covalent organic framework for photocatalysis.J Am Chem Soc2022;144:18750-5

[41]

Nguyen HL,Ma Y,Yaghi OM.3D covalent organic frameworks selectively crystallized through conformational design.J Am Chem Soc2020;142:20335-9

[42]

Han WK,Yan X,Zhang J.Integrating light-harvesting ruthenium(II)-based units into three-dimensional metal covalent organic frameworks for photocatalytic hydrogen evolution.Angew Chem Int Ed2022;61:e202208791

[43]

Yan X,Su X.A redox-active covalent organic framework with highly accessible aniline-fused quinonoid units affords efficient proton charge storage.Adv Mater2023;35:e2305037

[44]

Davies JA,Nitschke JR.Triamine and tetramine edge-length matching drives heteroleptic triangular and tetragonal prism assembly.J Am Chem Soc2024;146:5215-23 PMCID:PMC10910536

[45]

Yang MY,Zhang M.Three-motif molecular junction type covalent organic frameworks for efficient photocatalytic aerobic oxidation.J Am Chem Soc2024;146:3396-404

[46]

Fang L,Qiu S.Autocatalytic interfacial synthesis of self-standing amide-linked covalent organic framework membranes.Angew Chem Int Ed2025;64:e202423220

[47]

Guo M,Luo M.The promotion effect of π-π interactions in Pd NPs catalysed selective hydrogenation.Nat Commun2022;13:1770 PMCID:PMC8975908

[48]

Gutiérrez L,Casadevall C.Low oxidation state cobalt center stabilized by a covalent organic framework to promote hydroboration of olefins.ACS Catal2023;13:3044-54

[49]

Fang Y,Huang H.Design and synthesis of broadband absorption covalent organic framework for efficient artificial photocatalytic amine coupling.Nat Commun2024;15:4856 PMCID:PMC11161580

[50]

Zhu Y,Wang W,Ding C.Sequential oxidation/cyclization of readily available imine linkages to access benzoxazole-linked covalent organic frameworks.Angew Chem Int Ed2024;63:e202319909

[51]

Wang Z,He C,Zhao L.Naphthalene-based donor-acceptor covalent organic frameworks as an electron distribution regulator for boosting photocatalysis.Chem Commun2024;60:4793-6

[52]

Zhang G,Packwood D.Construction of a hierarchical architecture of covalent organic frameworks via a postsynthetic approach.J Am Chem Soc2018;140:2602-9

[53]

Zhang S,Guo L,Tan B.Strong-base-assisted synthesis of a crystalline covalent triazine framework with high hydrophilicity via benzylamine monomer for photocatalytic water splitting.Angew Chem Int Ed2020;59:6007-14

[54]

Wang S,Wang X.Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution.J Am Chem Soc2018;140:15145-8

[55]

Narani A,Zhang J,Foston M.Lignin monomer quantification without standards: using gas chromatography with dual quantitative carbon detection and mass spectrometry.Anal Chem2025;97:8286-92

[56]

Nutting JE,Stahl SS.Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions.Chem Rev2018;118:4834-85 PMCID:PMC6284524

[57]

Beejapur HA,Hu K,Wang J.TEMPO in chemical transformations: from homogeneous to heterogeneous.ACS Catal2019;9:2777-830

[58]

Chen Z,Hao M.Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance.Nat Commun2023;14:1106 PMCID:PMC9970987

[59]

He H,Zhang P,Li X.Inducing local charge polarization by constructing isomeric covalent organic frameworks with different orientations of imine bonds for enhancing photocatalytic hydrogen evolution.J Mater Chem A2023;12:227-32

PDF

901

Accesses

0

Citation

Detail

Sections
Recommended

/