In situ engineering of pyrrolic-N-dominated solid electrolyte interphases for stable zinc metal anodes

Jiang Bian , Bo Yu , Hengguang Cao , Qiongqiong Lu , Peixun Xiong

Energy Materials ›› 2026, Vol. 6 ›› Issue (1) : 600008

PDF
Energy Materials ›› 2026, Vol. 6 ›› Issue (1) :600008 DOI: 10.20517/energymater.2025.136
Article

In situ engineering of pyrrolic-N-dominated solid electrolyte interphases for stable zinc metal anodes

Author information +
History +
PDF

Abstract

Metallic zinc anodes are promising candidates for aqueous batteries due to their high abundance, low cost, and environmental friendliness. However, challenges such as dendrite formation, hydrogen evolution side reactions, and irreversible corrosion hinder their practical application. In this study, we propose a pyrrolic nitrogen-enriched solid electrolyte interphase (SEI) layer to overcome these limitations and achieve a stable, dendrite-free zinc anode. By leveraging molecular functionalization, pyrrolic nitrogen facilitates uniform zinc deposition, suppresses unfavorable side reactions, and enhances the overall anode stability. Systematic experimental validation reveals that the engineered SEI achieves remarkable electrochemical performance, maintaining over 95% Coulombic efficiency and delivering long-term cycling stability beyond 500 cycles in an aqueous environment. Further computational simulations elucidate the synergistic interactions between pyrrolic nitrogen and zinc ions, offering deep insights into the underlying mechanisms of interphase stabilization. This work not only addresses the primary bottlenecks of zinc anodes but also establishes a scalable design framework for next-generation aqueous zinc batteries, enabling both improved durability and higher efficiency for real-world applications.

Keywords

Aqueous zinc metal batteries / dendrite-free / solid electrolyte interphase / pyrrolic-N / interfacial engineering

Cite this article

Download citation ▾
Jiang Bian, Bo Yu, Hengguang Cao, Qiongqiong Lu, Peixun Xiong. In situ engineering of pyrrolic-N-dominated solid electrolyte interphases for stable zinc metal anodes. Energy Materials, 2026, 6(1): 600008 DOI:10.20517/energymater.2025.136

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahuis M,Vogt D,Zellmer S.Recycling of solid-state batteries.Nat Energy2024;9:373-85

[2]

Yang M,Wang X.Deep eutectic solvent additive induced inorganic SEI and an organic buffer layer synergistic protected Li anode for durable Li-CO2 batteries.Adv Energy Mater2025;15:2405628

[3]

Al-abbasi M,He H.Challenges and protective strategies on zinc anode toward practical aqueous zinc-ion batteries.Carbon Neutral2024;3:108-41

[4]

Liang Y.Designing modern aqueous batteries.Nat Rev Mater2023;8:109-22

[5]

Luo C,Xiao Y.Recent development in addressing challenges and implementing strategies for manganese dioxide cathodes in aqueous zinc ion batteries.Energy Mater2024;4:400036

[6]

Li Y,Cheng J.Amorphous H0.82MoO3.26 cathodes based long cyclelife fiber-shaped Zn-ion battery for wearable sensors.Energy Storage Mater2022;49:227-35

[7]

Zhao Y,Guo W.Emerging strategies for the improvement of modifications in aqueous rechargeable zinc-iodine batteries: cathode, anode, separator, and electrolyte.Carbon Neutral2024;3:918-49

[8]

Guo W,Yu C.Mismatching integration-enabled strains and defects engineering in LDH microstructure for high-rate and long-life charge storage.Nat Commun2022;13:1409 PMCID:PMC8931012

[9]

Lin H,Lin C.Interfacial regulation via configuration screening of a disodium naphthalenedisulfonate additive enabled high-performance wide-pH Zn-based batteries.Energy Environ Sci2025;18:1282-93

[10]

Huang S,Lu J.Molecularly engineered multifunctional imide derivatives for practical Zn metal full cells.Energy Environ Sci2024;17:7870-81

[11]

Chen M,Zou Z.Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries.Rare Metals2023;42:2868-905

[12]

Han W,Seo W,Chu H.Nitrogen-doped chain-like carbon nanospheres with tunable interlayer distance for superior pseudocapacitance-dominated zinc- and potassium-ion storage.Carbon2021;184:534-43

[13]

Miao L,Jiao L.Insights into the design of mildly acidic aqueous electrolytes for improved stability of Zn anode performance in zinc-ion batteries.Energy Mater2023;3:300014

[14]

Wang K,Jin H.Multifunctional zinc silicate coating layer for high-performance aqueous zinc-ion batteries.Energy Mater2025;5:500012

[15]

Wang R,Wan J.Eutectic network synergy interface modification strategy to realize high-performance Zn-I2 batteries.Adv Energy Mater2024;14:2402900

[16]

Ballas E,Bergman G.Self-discharge in flowless Zn-Br2 batteries and its mitigation.Energy Storage Mater2024;70:103461

[17]

Li H,Qiao SZ.AI-driven electrolyte additive selection to boost aqueous Zn-ion batteries stability.Adv Mater2024;36:e2411991

[18]

Wu C,Ren K.2-methyl imidazole electrolyte additive enabling ultra-stable Zn anode.Chem Eng J2023;452:139465

[19]

Xiong P,Wei Y.Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes.ACS Energy Lett2023;8:2718-27

[20]

Song B,Wang X.Promoted de-solvation effect and dendrite-free Zn deposition enabled by in-situ formed interphase layer for high-performance zinc-ion batteries.Energy Mater2025;5:500031

[21]

Xiong L,Han W.Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries.Int J Miner Metall Mater2022;29:1053-60

[22]

Chen A,Guo Z.Fast-growing multifunctional ZnMoO4 protection layer enable dendrite-free and hydrogen-suppressed Zn anode.Energy Storage Mater2022;44:353-9

[23]

Han W,Wang M.Interface engineering via in-situ electrochemical induced ZnSe for a stabilized zinc metal anode.Chem Eng J2022;442:136247

[24]

Ren Q,He K.Long-cycling zinc metal anodes enabled by an in situ constructed ZnO coating layer.Adv Funct Mater2024;34:2312220

[25]

Wang W,Wang Y.Organic acid etching strategy for dendrite suppression in aqueous zinc-ion batteries.Adv Energy Mater2022;12:2102797

[26]

Tao F,Ren X.Different surface modification methods and coating materials of zinc metal anode.J Energy Chem2022;66:397-412

[27]

Pan H,Yan P.Reversible aqueous zinc/manganese oxide energy storage from conversion reactions.Nat Energy2016;1:16039

[28]

Chu Y,Wu S,Cui G.In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes.Energy Environ Sci2021;14:3609-20

[29]

Cao L,Pollard T.Fluorinated interphase enables reversible aqueous zinc battery chemistries.Nat Nanotechnol2021;16:902-10

[30]

Zhang S,Luo D.Dual-function electrolyte additive for highly reversible Zn anode.Adv Energy Mater2021;11:2102010

[31]

Cao L,Hu E.Solvation structure design for aqueous Zn metal batteries.J Am Chem Soc2020;142:21404-9

[32]

Yan M,Sun Y,Li H.Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive.Nano Energy2021;82:105739

[33]

Zhang J,Zeng L.A hydrogel electrolyte with high adaptability over a wide temperature range and mechanical stress for long-life flexible zinc-ion batteries.Small2024;20:e2312116

[34]

Zhou L,Yu F.Dislocation effect boosting the electrochemical properties of prussian blue analogues for 2.6 V high-voltage aqueous zinc-based batteries.ACS Appl Mater Interfaces2024;16:47454-63

[35]

Zhang F,Qian JW.Selective interface engineering with large π-conjugated molecules enables durable Zn anodes.Angew Chem Int Ed2025;64:e202425487

[36]

Li R,Chao Y.Hexaoxacyclooctadecane induced interfacial engineering to achieve dendrite-free Zn ion batteries.Energy Storage Mater2022;46:605-12

[37]

Zhang Y,Dong Q.Electrolytes additives for Zn metal anodes: regulation mechanism and current perspectives.Rare Metals2024;43:4162-97

[38]

Zhang Q,Fu L.The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive.Angew Chem Int Ed2019;58:15841-7

[39]

Wang D,Liu H.In situ formation of nitrogen-rich solid electrolyte interphase and simultaneous regulating solvation structures for advanced Zn metal batteries.Angew Chem Int Ed2022;61:e202212839

[40]

Huang S,Kwon HM.Stereoisomerism of multi-functional electrolyte additives for initially anodeless aqueous zinc metal batteries.Nat Commun2025;16:6117 PMCID:PMC12246245

[41]

Guo J,Huang H.Rational design of pyrrolic-N dominated carbon material derived from aminated lignin for Zn-ion supercapacitors.J Colloid Interface Sci2023;641:155-65

[42]

Cui F,Yu X,Song G.In-situ tuning the NH4+ extraction in (NH4)2V4O9 nanosheets towards high performance aqueous zinc ion batteries.J Power Sources2021;492:229629

[43]

Han W,Liu Y.Toward highly reversible aqueous zinc-ion batteries: nanoscale-regulated zinc nucleation via graphene quantum dots functionalized with multiple functional groups.Chem Eng J2023;452:139090

[44]

Hu F,Dong Z.Zwitterionic gemini additive as interface engineers for long-life aqueous Zn/TEMPO flow batteries with enhanced areal capacity.Energy Mater2025;5:500078

[45]

Hieu LT,Kim IT.Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life.Chem Eng J2021;411:128584

[46]

Feng H,Chen Z.Trace amounts of multifunctional electrolyte additives enhance cyclic stability of high-rate aqueous zinc-ion batteries.Small2024;20:e2407238

[47]

Zhang H,Li S.Graphene quantum dots enable dendrite-free zinc ion battery.Nano Energy2022;92:106752

[48]

Chen D,Xu W.Disrupting hydrogen bond network connectivity with a double-site additive for long-life aqueous zinc metal batteries.Exploration2025;5:20240007

[49]

Zhang F,Xia L.Bifunctional electrolyte addition for longer life and higher capacity of aqueous zinc-ion hybrid supercapacitors.Rare Metals2024;43:5060-9

[50]

Zhong Y,Zhang H.Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery.Nano Energy2022;98:107220

[51]

Zhao Z,Guo B.Malic acid additive with a dual regulating mechanism for high-performances aqueous zinc-ion batteries.Chem Eng J2024;500:157431

[52]

Zheng X,Sun J.Polyetheramine nematic spatial effects reshape the inner/outer helmholtz planes for energetic zinc batteries.Adv Funct Mater2025;35:2420434

[53]

Wang L,Chen D.Steric hindrance and orientation polarization by a zwitterionic additive to stabilize zinc metal anodes.Carbon Neutral2024;3:996-1008

[54]

Song Y,Liu C.A widely used nonionic surfactant with desired functional groups as aqueous electrolyte additives for stabilizing Zn anode.Rare Metals2024;43:3692-701

[55]

Zhang SJ,Wu H,Ye C.Protein interfacial gelation toward shuttle-free and dendrite-free Zn-iodine batteries.Adv Mater2024;36:e2404011

[56]

Wu K,Wan Y.Nitrogen and oxygen Co-doped graphene quantum dots as a trace amphipathic additive for dendrite-free Zn anodes.Adv Funct Mater2025;35:2412027

[57]

Yang Z,Mao Q.Reversing zincophobic/hydrophilic nature of metal-N-C via metal-coordination interaction for dendrite-free Zn anode with high depth-of-discharge.Adv Mater2024;36:e2311637

[58]

Deng S,Yang Z.Zwitterion-separated ion pair dominated additive-electrolyte structure for ultra-stable aqueous zinc ion batteries.Adv Funct Materials2024;34:2408546

[59]

Huang C,Feng J.Optimizing engineering of rechargeable aqueous zinc ion batteries to enhance the zinc ions storage properties of cathode material.J Power Sources2021;490:229528

[60]

Li Y,Zhang H.Bi-functional green additive anchoring interface enables stable zinc metal anodes for aqueous zinc-ions batteries.Adv Funct Mater2025;35:2410855

[61]

Han W,Li Q,Chu H.Ultrafast flame growth of carbon nanotubes for high-rate sodium storage.J Power Sources2019;439:227072

PDF

33

Accesses

0

Citation

Detail

Sections
Recommended

/