Unveiling ion coordination in solid polymer electrolytes through alkyl chain length modulation in lithium salt chemistry

Paul Neumann , Brigette A. Fortuin , Elene Sasieta-Barrutia , Leire Meabe , Lorena Garcia , Maria C. Morant-Miñana , Maria Forsyth , Margaud Lecuyer , Marc Deschamps , Yan Zhang , Javier Carrasco , Heng Zhang , Michel Armand , María Martinez-Ibañez

Energy Materials ›› 2025, Vol. 5 ›› Issue (12) : 500159

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (12) :500159 DOI: 10.20517/energymater.2025.120
Article

Unveiling ion coordination in solid polymer electrolytes through alkyl chain length modulation in lithium salt chemistry

Author information +
History +
PDF

Abstract

Tuning the lithium salts’ chemistry is a promising approach to achieve a competitive solid polymer electrolyte (SPE). Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) has been extensively investigated due to its excellent thermal and electrochemical stability. On the other hand, poly(ethylene oxide) (PEO) remains one of the most studied polymer matrices owing to its high solvating power, which promotes lithium salt dissociation. However, the low lithium transference number (TLi+) of LiTFSI/PEO (ca. 0.2) system is a handicap for high-performance SPE, mainly attributed to the high anion diffusion. In this work, a series of five lithium salts were designed by replacing one -CF3 group of LiTFSI with a dialkylamine moiety bearing different alkyl chain lengths. Ion coordination environments between PEO, cations and anions, along with their transport properties, were systematically investigated through experimental and computational approaches. The results demonstrate that anion diffusion can be effectively suppressed by introducing bulky alkyl groups, with the improved TLi+ (ca. 0.5) primarily attributed to steric hindrance rather than long-range interactions between the anion and the PEO matrix.

Keywords

Lithium salts / solid polymer electrolytes / lithium transference number / electrochemistry / transport properties / solid-state lithium metal batteries

Cite this article

Download citation ▾
Paul Neumann, Brigette A. Fortuin, Elene Sasieta-Barrutia, Leire Meabe, Lorena Garcia, Maria C. Morant-Miñana, Maria Forsyth, Margaud Lecuyer, Marc Deschamps, Yan Zhang, Javier Carrasco, Heng Zhang, Michel Armand, María Martinez-Ibañez. Unveiling ion coordination in solid polymer electrolytes through alkyl chain length modulation in lithium salt chemistry. Energy Materials, 2025, 5(12): 500159 DOI:10.20517/energymater.2025.120

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xia S,Zhang Z,Liu W.Practical challenges and future perspectives of all-solid-state lithium-metal batteries.Chem2019;5:753-85

[2]

An Y,Liu Y.Progress in solid polymer electrolytes for lithium-ion batteries and beyond.Small2022;18:e2103617

[3]

He M,Dai F.Industry needs for practical lithium-metal battery designs in electric vehicles.Nat Energy2024;9:1199-205

[4]

Cheng XB,Zhao CZ.Toward safe lithium metal anode in rechargeable batteries: a review.Chem Rev2017;117:10403-73

[5]

Fenton D,Wright P.Complexes of alkali metal ions with poly(ethylene oxide).Polymer1973;14:589

[6]

Mindemark J,Bowden T.Beyond PEO-Alternative host materials for Li+-conducting solid polymer electrolytes.Prog Polym Sci2018;81:114-43

[7]

Sundararaman S,Choo Y.Exploring the ion solvation environments in solid-state polymer electrolytes through free-energy sampling.Macromolecules2021;54:8590-600

[8]

Gudla H,Brandell D.To hop or not to hop: unveiling different modes of ion transport in solid polymer electrolytes through molecular dynamics simulations.ACS Appl Polym Mater2025;7:4716-24 PMCID:PMC12038787

[9]

Kalhoff J,Bresser D.Safer electrolytes for lithium-ion batteries: state of the art and perspectives.ChemSusChem2015;8:2154-75

[10]

Cameron GG,Sorrie GA.The mechanism of conductivity of liquid polymer electrolytes.J Chem Soc Faraday Trans 11987;83:3345

[11]

Xue Z,Xie X.Poly(ethylene oxide)-based electrolytes for lithium-ion batteries.J Mater Chem A2015;3:19218-53

[12]

Yu X,Seidler ME.Nanostructured ionic separator formed by block copolymer self-assembly: a gateway for alleviating concentration polarization in batteries.Macromolecules2022;55:2787-96

[13]

Cao D,Li Q,Xiang P.Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations.Matter2020;3:57-94

[14]

Wu B,Lochala J.The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries.Energy Environ Sci2018;11:1803-10

[15]

Khurana R,Archer LA.Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries.J Am Chem Soc2014;136:7395-402

[16]

Sun C,Gong Y,Zhang J.Recent advances in all-solid-state rechargeable lithium batteries.Nano Energy2017;33:363-86

[17]

Yang S,Kang MS.Insights into improving the li-ion transference number and li deposition uniformity toward a high-current-density lithium metal anode.Carbon Energy2025;7:e70053

[18]

Liu J,Liu H.Unlocking the failure mechanism of solid state lithium metal batteries.Advanced Energy Materials2022;12:2100748

[19]

Stolwijk NA,Reschke M,Bokeloh J.Salt-concentration dependence of the glass transition temperature in PEO-NaI and PEO-LiTFSI polymer electrolytes.Macromolecules2013;46:8580-8

[20]

Martinez-ibañez M,Oteo U.Anions with a dipole: toward high transport numbers in solid polymer electrolytes.Chem Mater2022;34:3451-60

[21]

Lin L.Accurate characterization of transference numbers in electrolyte systems.J Power Sources2024;603:234236

[22]

Zhu J,Zhao S,Belharouak I.Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: design, performance, and challenges.Adv Energy Mater2021;11:2003836

[23]

Shah DB,Karny A,Desimone JM.Effect of anion size on conductivity and transference number of perfluoroether electrolytes with lithium salts.J Electrochem Soc2017;164:A3511-7

[24]

Wang S,Min K.The effects of anion structure of lithium salts on the properties of in-situ polymerized thermoplastic polyurethane electrolytes.Polymer2010;51:2864-71

[25]

Zhang H,Zhu H.Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion.Angew Chem Int Ed2019;58:7829-34

[26]

Scheers J,Zukowska GZ,Wieczorek W.Ion-ion and ion-solvent interactions in lithium imidazolide electrolytes studied by Raman spectroscopy and DFT models.Phys Chem Chem Phys2011;13:11136-47

[27]

Porcarelli L,Salsamendi M.Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries.ACS Appl Mater Interfaces2016;8:10350-9

[28]

Jangu C,Zhang Z.Sulfonimide-containing triblock copolymers for improved conductivity and mechanical performance.Macromolecules2015;48:4520-8

[29]

Rolland J,Vlad A.Single-ion diblock copolymers for solid-state polymer electrolytes.Polymer2015;68:344-52

[30]

Sadoway DR,Trapa PE,Bannerjee P.Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries.J Power Sources2001;97-98:621-3

[31]

Ryu S,Olugebefola SC,Sadoway DR.Effect of counter ion placement on conductivity in single-ion conducting block copolymer electrolytes.J Electrochem Soc2005;152:A158

[32]

Gao J,Han DW.Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery applications.Chem Sci2021;12:13248-72 PMCID:PMC8528010

[33]

Stolz L,Röser S,Winter M.Single-ion versus dual-ion conducting electrolytes: the relevance of concentration polarization in solid-state batteries.ACS Appl Mater Interfaces2022;14:11559-66 PMCID:PMC8915161

[34]

Chen H,Qian S.Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries.Carbon Energy2021;3:929-56

[35]

Meng Y,Yu Q.Trace filling strategy of amphoteric molecules for large-capacity and long-lasting Li-Fe-F conversion all-solid-state batteries.J Energy Chem2025;110:153-64

[36]

Qiao L,Martínez-Ibañez M.Anion π-π stacking for improved lithium transport in polymer electrolytes.J Am Chem Soc2022;144:9806-16

[37]

Fortuin BA,Peña SR.Molecular-level insight into charge carrier transport and speciation in solid polymer electrolytes by chemically tuning both polymer and lithium salt.J Phys Chem C Nanomater Interfaces2023;127:1955-64

[38]

Lu N,Fan C,Lee J.A simple method for synthesizing polymeric lithium salts exhibiting relatively high cationic transference number in solid polymer electrolytes.Solid State Ionics2007;178:347-53

[39]

Sethurajan AK,Halalay IC,Protas B.Accurate characterization of ion transport properties in binary symmetric electrolytes using in situ NMR imaging and inverse modeling.J Phys Chem B2015;119:12238-48

[40]

Evans J,Bruce PG.Electrochemical measurement of transference numbers in polymer electrolytes.Polymer1987;28:2324-8

[41]

Bruce PG.Steady state current flow in solid binary electrolyte cells.J Electroanal Chem Interfacial Electrochem1987;225:1-17

[42]

Stolz L,Winter M.The Sand equation and its enormous practical relevance for solid-state lithium metal batteries.Mater Today2021;44:9-14

[43]

Havu V,Havu P.Efficient integration for all-electron electronic structure calculation using numeric basis functions.J Comput Phys2009;228:8367-79

[44]

Blum V,Hanke F.Ab initio molecular simulations with numeric atom-centered orbitals.Comput Phys Commun2009;180:2175-96

[45]

Lee C,Parr RG.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Phys Rev B1988;37:785

[46]

Becke AD.Density-functional thermochemistry. III. The role of exact exchange.J Chem Phys1993;98:5648-52

[47]

Molinari N,Kozinsky B.Effect of salt concentration on ion clustering and transport in polymer solid electrolytes: a molecular dynamics study of PEO-LiTFSI.Chem Mater2018;30:6298-306

[48]

Kang P,Chen D.Dynamical ion association and transport properties in PEO-LiTFSI electrolytes: effect of salt concentration.J Phys Chem B2022;126:4531-42

[49]

Brooks DJ,Goddard WA,Mailoa J.Atomistic description of ionic diffusion in PEO-LiTFSI: effect of temperature, molecular weight, and ionic concentration.Macromolecules2018;51:8987-95

[50]

Darden T,Pedersen L.Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems.J Chem Phys1993;98:10089-92

[51]

Essmann U,Berkowitz ML,Lee H.A smooth particle mesh Ewald method.J Chem Phys1995;103:8577-93

[52]

Pronk S,Schulz R.GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.Bioinformatics2013;29:845-54 PMCID:PMC3605599

[53]

Brooks CL 3rd,Plimpton S,van der Spoel D.Classical molecular dynamics.J Chem Phys2021;154:100401

[54]

Gouveia ASL,Tomé LC.Ionic liquids with anions based on fluorosulfonyl derivatives: from asymmetrical substitutions to a consistent force field model.Phys Chem Chem Phys2017;19:29617-24

[55]

Jorgensen WL,Tirado-rives J.Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids.J Am Chem Soc1996;118:11225-36

[56]

Rizzo RC.OPLS all-atom model for amines:  resolution of the amine hydration problem.J Am Chem Soc1999;121:4827-36

[57]

Watkins EK.Perfluoroalkanes:  conformational analysis and liquid-state properties from ab initio and Monte Carlo calculations.J Phys Chem A2001;105:4118-25

[58]

Brehm M,Gehrke S.TRAVIS-a free analyzer for trajectories from molecular simulation.J Chem Phys2020;152:164105

[59]

Brehm M.TRAVIS - a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories.J Chem Inf Model2011;51:2007-23

[60]

Mehrer H.Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes, 1th ed.; Springer Berlin, Heidelberg, 2007.

[61]

Zhou ZB,Tatsumi K.Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates.Chemistry2005;11:752-66

[62]

Zhou ZB,Tatsumi K.Low-melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate.Chemistry2004;10:6581-91

[63]

Zhou ZB,Tatsumi K.Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties.Chemistry2006;12:2196-212

[64]

Fan L,Nan C.Tailoring inorganic-polymer composites for the mass production of solid-state batteries.Nat Rev Mater2021;6:1003-19

[65]

Zhang X,Fu C.Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries.NanoMicro Lett2024;17:2

[66]

Ulihin AS,Gerasimov KB.Conductivity of lithium bis(trifluoromethane)sulfonamide (LiTFSI).6th International Russian-Kazakhstan Conference “Chemical Technologies of Functional Materials” (RKFM-2020)Elsevier Ltd., 2020; Vol. 31, pp 523-4

[67]

Kotwiński J,Leszczynska M,Abrahams I.Polymorphism in LiN(CF3SO2)2.Solid State Ionics2019;330:9-16

[68]

Lassègues JC,Aupetit C.Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids.J Phys Chem A2009;113:305-14

[69]

Pitawala J,Johansson P,Matic A.Coordination and interactions in a Li-salt doped ionic liquid.J Non-Cryst Solids2015;407:318-23

[70]

Edman L.Ion association and ion solvation effects at the crystalline-amorphous phase transition in PEO-LiTFSI.J Phys Chem B2000;104:7254-8

[71]

Rey I,Lindgren J,Grondin J.Spectroscopic and theoretical study of (CF3SO2)2N-(TFSI-) and (CF3SO2)2NH (HTFSI).J Phys Chem A1998;102:3249-58

[72]

Seo DM,Sommer RD,Borodin O.Solvate structures and spectroscopic characterization of LiTFSI electrolytes.J Phys Chem B2014;118:13601-8

[73]

Rey I,Grondin J.Infrared and Raman study of the PEO-LiTFSI polymer electrolyte.Electrochim Acta1998;43:1505-10

[74]

Han S,Boyle PD.Electrolyte solvation and ionic association: Part IX. Structures and raman spectroscopic characterization of LiFSI solvates.J Electrochem Soc2022;169:110544

[75]

Bazylewski P,Fanchini G.In situ Raman spectroscopy distinguishes between reversible and irreversible thiol modifications in L-cysteine.RSC Adv2017;7:2964-70

[76]

Savoie BM,Miller TF 3rd.Enhancing cation diffusion and suppressing anion diffusion via lewis-acidic polymer electrolytes.J Phys Chem Lett2017;8:641-6

[77]

Monroe C.The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces.J Electrochem Soc2005;152:A396

[78]

Doyle M,Newman J.The importance of the lithium ion transference number in lithium/polymer cells.Electrochim Acta1994;39:2073-81

[79]

Sand HJ.III. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid.London Edinburgh Dublin Philos Mag J Sci1901;1:45-79

[80]

Chen H,Hencz L.Stable seamless interfaces and rapid ionic conductivity of Ca-CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery.Adva Energy Mater2020;10:2000049

PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

/