Fe3+-driven tunnel engineering for stabilizing metastable ramsdellite MnO2 in high-performance zinc-ion batteries
Yutong Meng , Yangfan Li , Hang Xiao , Xiang Wang , Zhiwen Wang , Fan Zhang , Wenqing Ma , Da Xiong , Zisheng Xiao , Jiang Yin , Zhiye Yuan , Tong Zhou , Lishan Yang , Changhui Liu , Xiongwei Wu
Energy Materials ›› 2025, Vol. 5 ›› Issue (11) : 500142
Fe3+-driven tunnel engineering for stabilizing metastable ramsdellite MnO2 in high-performance zinc-ion batteries
Ramsdellite MnO2 (R-MnO2), with its expanded (1 × 2) tunnels, offers superior Zn2+ diffusion kinetics for aqueous zinc-ion batteries but suffers from metastability-induced phase collapse. Herein, Fe3+ doping is demonstrated as a critical strategy to thermodynamically stabilize R-MnO2 while optimizing its electrochemical functionality. Through a synergistic H+/Fe3+ hydrothermal process, spent ZnMn2O4 from alkaline batteries is converted into orthorhombic R-FexMn1-xO2 nanocrystals. Fe3+ incorporation enlarges the tunnel structure, reduces surface energy, and mitigates Jahn-Teller distortion by increasing the Mn4+/Mn3+ ratio. This yields a high specific surface area, enhanced ion diffusion kinetics, and exceptional cycling stability. The R-FexMn1-xO2 cathode achieves a 286.8 mAh g-1 capacity at 0.1 A g-1, outperforming β-MnO2 (30.9 mAh g-1 at 1.5 A g-1). This work establishes Fe3+ doping as an essential mechanism for stabilizing high-performance metastable cathodes, enabling sustainable upcycling of battery waste.
Ramsdellite MnO2 / zinc-ion batteries / energy density / chemical and electrochemical stability
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
/
| 〈 |
|
〉 |