Fe3+-driven tunnel engineering for stabilizing metastable ramsdellite MnO2 in high-performance zinc-ion batteries

Yutong Meng , Yangfan Li , Hang Xiao , Xiang Wang , Zhiwen Wang , Fan Zhang , Wenqing Ma , Da Xiong , Zisheng Xiao , Jiang Yin , Zhiye Yuan , Tong Zhou , Lishan Yang , Changhui Liu , Xiongwei Wu

Energy Materials ›› 2025, Vol. 5 ›› Issue (11) : 500142

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (11) :500142 DOI: 10.20517/energymater.2025.113
Communication

Fe3+-driven tunnel engineering for stabilizing metastable ramsdellite MnO2 in high-performance zinc-ion batteries

Author information +
History +
PDF

Abstract

Ramsdellite MnO2 (R-MnO2), with its expanded (1 × 2) tunnels, offers superior Zn2+ diffusion kinetics for aqueous zinc-ion batteries but suffers from metastability-induced phase collapse. Herein, Fe3+ doping is demonstrated as a critical strategy to thermodynamically stabilize R-MnO2 while optimizing its electrochemical functionality. Through a synergistic H+/Fe3+ hydrothermal process, spent ZnMn2O4 from alkaline batteries is converted into orthorhombic R-FexMn1-xO2 nanocrystals. Fe3+ incorporation enlarges the tunnel structure, reduces surface energy, and mitigates Jahn-Teller distortion by increasing the Mn4+/Mn3+ ratio. This yields a high specific surface area, enhanced ion diffusion kinetics, and exceptional cycling stability. The R-FexMn1-xO2 cathode achieves a 286.8 mAh g-1 capacity at 0.1 A g-1, outperforming β-MnO2 (30.9 mAh g-1 at 1.5 A g-1). This work establishes Fe3+ doping as an essential mechanism for stabilizing high-performance metastable cathodes, enabling sustainable upcycling of battery waste.

Keywords

Ramsdellite MnO2 / zinc-ion batteries / energy density / chemical and electrochemical stability

Cite this article

Download citation ▾
Yutong Meng, Yangfan Li, Hang Xiao, Xiang Wang, Zhiwen Wang, Fan Zhang, Wenqing Ma, Da Xiong, Zisheng Xiao, Jiang Yin, Zhiye Yuan, Tong Zhou, Lishan Yang, Changhui Liu, Xiongwei Wu. Fe3+-driven tunnel engineering for stabilizing metastable ramsdellite MnO2 in high-performance zinc-ion batteries. Energy Materials, 2025, 5(11): 500142 DOI:10.20517/energymater.2025.113

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chao D,Xie F.Roadmap for advanced aqueous batteries: From design of materials to applications.Sci Adv2020;6:eaba4098 PMCID:PMC7244306

[2]

Lai G,Zhang H.In-situ positive electrode-electrolyte interphase construction enables stable Ah-level Zn-MnO2 batteries.Nat Commun2025;16:2194 PMCID:PMC11880571

[3]

Luo C,Xiao Y.Recent development in addressing challenges and implementing strategies for manganese dioxide cathodes in aqueous zinc ion batteries.Energy Mater2024;4:400036

[4]

Hu X,Vikström T,Zackrisson M.A novel process on the recovery of zinc and manganese from spent alkaline and zinc-carbon batteries.J Hazard Mater2021;411:124928

[5]

Xu Z,Wang X.Upcycling spent alkaline batteries into rechargeable zinc metal batteries.Nano Energy2022;102:107724

[6]

Zhu J,Bi S.Towards more sustainable aqueous zinc-ion batteries.Angew Chem Int Ed2024;63:e202403712

[7]

Kitchaev DA,Sun W.Thermodynamics of phase selection in MnO2 framework structures through alkali intercalation and hydration.J Am Chem Soc2017;139:2672-81

[8]

Peng H,Wang D,Zhang C.Dynamic Zn/electrolyte interphase and enhanced cation transfer of sol electrolyte for all-climate aqueous zinc metal batteries.Angew Chem Int Ed2023;62:e202308068

[9]

Abdalla KK,Abdalla KK.Rational design and prospects for advanced aqueous Zn-organic batteries enabled by multielectron redox reactions.Sci China Mater2024;67:1367-78

[10]

Xiao H,Lu B.Ramsdellite-MnO2 regeneration via acid-mediated redox tuning toward rechargeable aqueous zinc-ion batteries.Inorg Chem2025;64:8322-33

[11]

Cao JM,Li K.Coulombic-hinderance regulation on pyrovanadates for practicable calcium-ion batteries: a solid-solution strategy.Natl Sci Rev2025;12:nwaf074 PMCID:PMC12023857

[12]

Xiao J,Xiao Y.A hydro-stable and phase-transition-free P2-type cathode with superior cycling stability for high-voltage sodium-ion batteries.Chem Eng J2025;506:160010

[13]

Zhang A,Wang Y.Hybrid superlattice-triggered selective proton grotthuss intercalation in δ-MnO2 for high-performance zinc-ion battery.Angew Chem Int Ed2023;62:e202313163

[14]

Huang X,Yan X.Microstructure optimization and electrochemical behavior of in-situ growth Ramsdellite-MnO2@NCA-LDH@CC for supercapacitors and oxygen evolution reaction catalysts.J Materiomics2024;10:552-65

[15]

Chen C,Ji X,Miao L.Enhanced electrochemical performance by facile oxygen vacancies from lower valence-state doping for ramsdellite-MnO2.J Mater Chem A2015;3:12461-7

[16]

Li S,Huang J.Regulating interfacial kinetics boosts the durable A h-level zinc-ion batteries.Energy Environ Sci2025;18:2599-609

[17]

Li X,Low J,Xiao J.Engineering heterogeneous semiconductors for solar water splitting.J Mater Chem A2015;3:2485-534

[18]

Xu Y,Dong N.Novel polyimide binder for achieving high-rate capability and long-term cycling stability of LiNi0.8Co0.1Mn0.1O2 cathode via constructing polar and micro-branched crosslinking network structure.J Energy Chem2023;76:19-31

[19]

Pan G,Zhang J,Zhang L.Porous carbon-coated Fe-doped MnO as high-performance cathode for aqueous zinc ion batteries.Energy Tech2025;13:2401690

[20]

Zhong Z,Li L.Improving performance of zinc-manganese battery via efficient deposition/dissolution chemistry.Energy Storage Mater2022;46:165-74

[21]

Yang Z,Shen Y.New insights into phase-mechanism relationship of MgxMnO2 nanowires in aqueous zinc-ion batteries.Small2022;18:2107743

[22]

Li X,Zhou L.Suppressing Jahn-Teller distortion and locking lattice water with doped Fe(III) in birnessite toward fast and stable zinc-ion batteries.Mater Horiz2024;11:4133-43

[23]

Chen X,Zhao G.Construction of MnO2-Mn3O4 heterostructures to facilitate high-performance aqueous magnesium ion energy storage.Chem Commun2024;60:3067-70

[24]

Li Z,Zhang J,Zhang S.One-step synthesis of MnOx/PPy nanocomposite as a high-performance cathode for a rechargeable zinc-ion battery and insight into its energy storage mechanism.Nanoscale2020;12:4150-8

[25]

Zhao Y,Zhang Y.Vacancy-rich Al-doped MnO2 cathodes break the trade-off between kinetics and stability for high-performance aqueous Zn-ion batteries.Energy Environ Sci2024;17:1279-90

[26]

Ding S,Qin R.Oxygen-deficient β-MnO2@ graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries.Nano-Micro Lett2021;13:173

[27]

Yang X,Liu F.In-depth study of electrochemical capacitor performance of MnO2 during phase transition from Ramsdellite-MnO2 to birnessite-MnO2.Electrochim Acta2018;280:77-85

[28]

Huang H,He Z.Enhancing Zn2+/H+ joint charge storage in MnO2: concurrently tailoring Mn’s local electron density and O’s p-band center.ACS Nano2024;18:25601-13

[29]

Yao H,Zheng Y.Pre-intercalation of ammonium ions in layered δ-MnO2 nanosheets for high-performance aqueous zinc-ion batteries.Angew Chem Int Ed2023;62:e202315257

[30]

Xu Z,Zhang W.Hydrogen-bond chemistry inhibits Jahn-Teller distortion caused by Mn 3d orbitals for long-lifespan aqueous Zn//MnO2 batteries.J Mater Chem A2024;12:25491-503

[31]

Long J,Cuan J.BoosteD CHARGE TRANSFER IN TWINBORn α-(Mn2O3-MnO2) heterostructures: toward high-rate and ultralong-life zinc-ion batteries.ACS Appl Mater Interfaces2020;12:32526-35

[32]

Jiang S,Fang L.Achieving non-interfacial blocking zinc ion transport based on MOF derived manganese oxides and amorphous carbon hybrid materials.Chem Eur J2024;30:e202401802

[33]

Ren Y,Zhang S.CNT@MnO2 composite ink toward a flexible 3D printed micro-zinc-ion battery.Carbon Energy2022;4:446-57

[34]

Ruo H,Huang J.Constructing low-cost stable zinc-ion batteries with sodium-rich monoclinic manganese hexacyanoferrate cathode.Surf Interfaces2024;51:104594

[35]

Zhang Y,Tang X.Ultrathin polyaniline-coated single-crystalline Mn2O3 nanoporous ellipsoids with high energy density and cyclability for low-cost zinc-ion batteries.ACS Appl Nano Mater2022;5:12729-36

PDF

184

Accesses

0

Citation

Detail

Sections
Recommended

/