Layered oxide cathodes for potassium-ion batteries: challenges, strategies and perspectives

Wenjie Tang , Yongwei Tang , Mengting Liu , Yonghong Cheng , Peng-Fei Wang

Energy Materials ›› 2025, Vol. 5 ›› Issue (11) : 500140

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (11) :500140 DOI: 10.20517/energymater.2025.11
Review

Layered oxide cathodes for potassium-ion batteries: challenges, strategies and perspectives

Author information +
History +
PDF

Abstract

Potassium-ion batteries are currently garnering extensive focus on account of the cost-effectiveness and generous supply of potassium resources. Investigating outstanding electrode materials that exhibit favorable performance is essential for the advancement of these batteries. Layered transition metal oxides have emerged as a highly promising cathode material owing to their high capacity and facile synthesis. However, their effective application is hindered due to inadequate performance, which can be ascribed to irreversible phase transition, air instability and interfacial instability. Herein, this review comprehensively outlines the causes of these three key scientific issues and proposes some corresponding optimization strategies, mainly including element doping, surface modification, structural design, and electrolyte optimization, with the aim of offering insights for the prospective advancement of potassium-based layered oxide cathode materials.

Keywords

Potassium-ion batteries / layered oxides / irreversible phase transition / air instability / interfacial instability

Cite this article

Download citation ▾
Wenjie Tang, Yongwei Tang, Mengting Liu, Yonghong Cheng, Peng-Fei Wang. Layered oxide cathodes for potassium-ion batteries: challenges, strategies and perspectives. Energy Materials, 2025, 5(11): 500140 DOI:10.20517/energymater.2025.11

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Choi JW.Promise and reality of post-lithium-ion batteries with high energy densities.Nat Rev Mater2016;1:201613

[2]

Kim H,Bianchini M.A new strategy for high-voltage cathodes for K-ion batteries: stoichiometric KVPO4F.Adv Energy Mater2018;8:1801591

[3]

Gurung A.Solar charging batteries: advances, challenges, and opportunities.Joule2018;2:1217-30

[4]

Lee W,Yun S,Kim H.Multiscale factors in designing alkali-ion (Li, Na, and K) transition metal inorganic compounds for next-generation rechargeable batteries.Energy Environ Sci2020;13:4406-49

[5]

Vaalma C,Weil M.A cost and resource analysis of sodium-ion batteries.Nat Rev Mater2018;3:18013

[6]

Liu Y,Tan K.Recent progress in flexible non-lithium based rechargeable batteries.J Mater Chem A2019;7:4353-82

[7]

Sultana I,Rahman MM,Glushenkov AM.Tin-based composite anodes for potassium-ion batteries.Chem Commun2016;52:9279-82

[8]

Xu Y,He Y.Construction of CoS2 nanoparticles embedded in well-structured carbon nanocubes for high-performance potassium-ion half/full batteries.Sci China Chem2021;64:1401-9

[9]

Komaba S,Dahbi M.Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors.Electrochem Commun2015;60:172-5

[10]

Okoshi M,Komaba S,Nakai H.Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: a comparison with lithium, sodium, and magnesium ions.J Electrochem Soc2017;164:A54-60

[11]

Dhir S,Capone I.Outlook on K-ion batteries.Chem2020;6:2442-60

[12]

Wang B,Yang Y.Post-lithium-ion battery era: recent advances in rechargeable potassium-ion batteries.Chemistry2021;27:512-36

[13]

Kim H,Wang J.Next-generation cathode materials for non-aqueous potassium-ion batteries.Trends Chem2019;1:682-92

[14]

Saju SK,Xu J,Pramanik A.Hard carbon anode for lithium-, sodium-, and potassium-ion batteries: advancement and future perspective.Cell Rep Phys Sci2024;5:101851

[15]

Pramanik A,Saju SK,Kundu M.Ternary metal sulfides as electrode materials for Na/K-ion batteries and electrochemical supercapacitor: advances/challenges and prospects.Adv Energy Mater2024;14:2401657

[16]

Wang X,Huang J.S/N-co-doped graphite nanosheets exfoliated via three-roll milling for high-performance sodium/potassium ion batteries.J Mater Sci Technol2023;147:47-55

[17]

Vaalma C,Buchholz D.Non-aqueous K-ion battery based on layered K0.3MnO2 and hard carbon/carbon black.J Electrochem Soc2016;163:A1295

[18]

Park WB,Park C.KVP2O7 as a robust high-energy cathode for potassium-ion batteries: pinpointed by a full screening of the inorganic registry under specific search conditions.Adv Energy Mater2018;8:1703099

[19]

Zhang X,Dinh KN.Layered oxide cathode for potassium-ion battery: recent progress and prospective.Small2020;16:e2002700

[20]

Zhu YH,Yang X.Reconstructed orthorhombic V2O5 polyhedra for fast ion diffusion in K-ion batteries.Chem2019;5:168-79

[21]

Linnell SF,Choi YS.Enhanced oxygen redox reversibility and capacity retention of titanium-substituted Na4/7[□1/7Ti1/7Mn5/7]O2 in sodium-ion batteries.J Mater Chem A2022;10:9941-53

[22]

Hosaka T,Hameed AS.Research development on K-ion batteries.Chem Rev2020;120:6358-466

[23]

Kaufman JL.Cation diffusion facilitated by antiphase boundaries in layered intercalation compounds.Chem Mater2022;4:1889-96

[24]

Cho MK,Choi JU.Cycling stability of layered potassium manganese oxide in nonaqueous potassium cells.ACS Appl Mater Interfaces2019;11:27770-9.

[25]

Wu Z,Chen S,Liu J.Potassium-ion battery cathodes: past, present, and prospects.J Power Sources2021;484:229307

[26]

Cong J,Li K.Research progress of manganese-based layered oxides as cathode materials for potassium-ion batteries.J Electroanal Chem2022;927:116971

[27]

Xu YS,Tao XS.High-performance cathode materials for potassium-ion batteries: structural design and electrochemical properties.Adv Mater2021;33:e2100409

[28]

Delmas C,Hagenmuller P.Evolution cristallochimique et propriétés physiques de quelques oxydes lamellaires.Mater Sci Eng1977;31:297-301

[29]

Delmas C,Hagenmuller P.Structural classification and properties of the layered oxides.Phys B+C1980;99:81-5

[30]

Ren M,Wang C.Advances on manganese-oxide-based cathodes for Na-ion batteries.Energy Fuels2020;34:13412-26.

[31]

Wang PF,Yin YX.Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance.Adv Energy Mater2018;8:1701912

[32]

Huang ZX,Heng YL,Geng HB.Advanced layered oxide cathodes for sodium/potassium-ion batteries: development, challenges and prospects.Chem Eng J2023;452:139438

[33]

Jha PK,Fichtner M.P3 type layered oxide frameworks: an appealing family of insertion materials for K-ion batteries.Curr Opin Electrochem2023;38:101216

[34]

Jha PK,Barpanda P.Evaluation of P3-type layered oxides as K-ion battery cathodes.Inorg Chem2023;62:14971-9

[35]

Liao J,Zhang Z,Li J.Recent progress and prospects of layered cathode materials for potassium-ion batteries.Energy Environ Mater2021;4:178-200

[36]

Liu Z,Yang Y,Sun S.Advances and perspectives on transitional metal layered oxides for potassium-ion battery.Energy Storage Mater2021;34:211-28

[37]

Liu CL,Huang HB,Wang ZW.Layered potassium-deficient P2- and P3-type cathode materials KxMnO2 for K-ion batteries.Chem Eng J2019;356:53-9

[38]

Kim H,Bo SH,Kwon DH.K-ion batteries based on a P2-type K0.6CoO2 cathode.Adv Energy Mater2017;7:1700098

[39]

Hwang JY,Yu TY,Sun YK.Development of P3-K0.69CrO2 as an ultra-high-performance cathode material for K-ion batteries.Energy Environ Sci2018;11:2821-7

[40]

Kim H,Urban A.Stoichiometric layered potassium transition metal oxide for rechargeable potassium batteries.Chem Mater2018;30:6532-9

[41]

Zhang X,Qu X.Layered P2-Type K0.44Ni0.22Mn0.78O2 as a high-performance cathode for potassium-ion batteries.Adv Funct Mater2019;29:1905679

[42]

Bai P,Zhang X,Guo S.Ni-doped layered manganese oxide as a stable cathode for potassium-ion batteries.ACS Appl Mater Interfaces2020;12:10490-5

[43]

Xiao Z,Xia F.K+ modulated K+/vacancy disordered layered oxide for high-rate and high-capacity potassium-ion batteries.Energy Environ Sci2020;13:3129-37

[44]

Peng B,Gao J,Li J.High energy K-ion batteries based on P3-Type K0.5MnO2 hollow submicrosphere cathode.J Power Sources2019;437:226913

[45]

Deng T,Chen J.Layered P2-type K0.65Fe0.5Mn0.5O2 microspheres as superior cathode for high-energy potassium-ion batteries.Adv Funct Mater2018;28:1800219

[46]

Tang Y,Liu M.Realizing a single-phase reaction and K+/vacancy disordering in P2-K0.56Na0.11Li0.12Ni0.22Mn0.66O2 by lithium substitution for potassium-ion batteries.J Mater Chem A2024;12:14360-6

[47]

Nathan MGT,Naveen N.A comparison of as-synthesized P2-K0.70[Cr0.85Sb0.15]O2 and Ion-Exchanged P2-K0.62Na0.08[Cr0.85Sb0.15]O2 demonstrates the superiority of the latter as a potassium-ion battery cathode.J Electrochem Soc2020;167:100507

[48]

Park H,Ko W.Review on cathode materials for sodium- and potassium-ion batteries: structural design with electrochemical properties.Batteries Supercaps2023;6:e202200486

[49]

Li W,Zhang W.Advanced cathodes for potassium-ion batteries with layered transition metal oxides: a review.J Mater Chem A2021;9:8221-47

[50]

Yabuuchi N,Dahbi M.Research development on sodium-ion batteries.Chem Rev2014;114:11636-82.

[51]

Sun K,Hao G.Review on layered manganese-based metal oxides cathode materials for potassium-ion batteries: from preparation to modification.Chem Rec2024;24:e202300327

[52]

Kim H,Kim JC.Investigation of potassium storage in layered P3-type K0.5MnO2 cathode.Adv Mater2017;29:1702480

[53]

Liu YF,Peng DN.Layered oxide cathodes for sodium-ion batteries: from air stability, interface chemistry to phase transition.InfoMat2023;5:e12422

[54]

Su Y,Chen G.Strategies of removing residual lithium compounds on the surface of Ni-rich cathode materials.Chin J Chem2021;39:189-98

[55]

Seong WM,Manthiram A.Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries.Chem Mater2020;32:9479-89

[56]

Yao HR,Xin S.Air-stability of sodium-based layered-oxide cathode materials.Sci China Chem2022;65:1076-87

[57]

Lu Z.Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3-xMn2/3]O2.Chem Mater2001;13:1252-7

[58]

Han MH,Sharma N.High-performance P2-phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries.Chem Mater2016;28:106-16

[59]

Duffort V,Black R.Uptake of CO2 in layered P2-Na0.67Mn0.5Fe0.5O2: insertion of carbonate anions.Chem Mater2015;27:2515-24

[60]

Yang Y,Du C.Decoupling the air sensitivity of Na-layered oxides.Science2024;385:744-52

[61]

Zhang X,Sun G.Hydration enables air-stable and high-performance layered cathode materials for both organic and aqueous potassium-ion batteries.Adv Funct Mater2022;32:2204318

[62]

Liu X,Zhang Q.K-rich spinel interface of air-stable layered oxide cathodes for potassium-ion batteries.Adv Mater2024;36:e2407980

[63]

Wang H,Kang F.Solid electrolyte interphase (SEI) in potassium ion batteries.Energy Environ Sci2020;13:4583-608

[64]

Mao J,Lyu Y.Organic electrolyte design for practical potassium-ion batteries.J Mater Chem A2022;10:19090-106

[65]

Liu Y,Dai L.The features and progress of electrolyte for potassium ion batteries.Small2020;16:e2004096

[66]

Zhang J,Song K.Advances in electrode/electrolyte interphase for sodium-ion batteries from half cells to full cells.Cell Rep Phys Sci2022;3:100868

[67]

Shi C,Chen X.Challenges of layer-structured cathodes for sodium-ion batteries.Nanoscale Horiz2022;7:338-51

[68]

Che H,Wang H.Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives.J Power Sources2018;407:173-9

[69]

Wang C,Ren M.Interfacial chemistry enables highly reversible Na extraction/intercalation in layered-oxide cathode materials.Chin J Chem2023;41:1791-6

[70]

Asl HY.Reining in dissolved transition-metal ions.Science2020;369:140-1

[71]

Mu L,Kou R.Deciphering the cathode-electrolyte interfacial chemistry in sodium layered cathode materials.Adv Energy Mater2018;8:1801975

[72]

Yaghoobnejad Asl H, Manthiram A. Proton-induced disproportionation of Jahn-Teller-Active transition-metal ions in oxides due to electronically driven lattice instability.J Am Chem Soc2020;142:21122-30

[73]

Li F,Wu S.Interface engineering enabled high-performance layered P3-type K0.5MnO2 cathode for low-cost potassium-ion batteries.Electrochim Acta2023;439:141571

[74]

Huang Y,Chen N,Zeng Y.A conformal protective skin producing stable cathode-electrolyte interface for long-life potassium-ion batteries.Small2023;19:e2302841

[75]

Xue L,Gao H.Low-cost high-energy potassium cathode.J Am Chem Soc2017;139:2164-7

[76]

Bao J,Liu J.Ultrafast-kinetics, ultralong-cycle-life, bifunctional inorganic open-framework for potassium-ion batteries.Energy Storage Mater2021;42:806-14

[77]

Liu T,Li Y.Insight of K-deficient layered KxMnO2 cathode for potassium-ions batteries.J Energy Chem2022;64:335-43

[78]

Puneeth NPN,Kalai Selvan R.Synthesis and electrochemical properties of crystalline K0.7MnO2 particles for K-ion batteries.Mater Lett2022;316:131997

[79]

Choi JU,Jo JH.Facile migration of potassium ions in a ternary P3-type K0.5[Mn0.8Fe0.1Ni0.1]O2 cathode in rechargeable potassium batteries.Energy Storage Mater2020;25:714-23

[80]

Baskar S,Barpanda P.Layered P2-NaxCoO2 and NaxFeO2 as cathode materials for potassium-ion batteries.ECS Trans2017;80:357-64

[81]

Han SC,Sohn KS.KFeO2 with corner-shared FeO4 frameworks as a new type of cathode material in potassium-ion batteries.J Solid State Electrochem2019;23:3135-43

[82]

Choi JU,Hwang JY,Sun YK.K0.54[Co0.5Mn0.5]O2: new cathode with high power capability for potassium-ion batteries.Nano Energy2019;61:284-94

[83]

Hironaka Y,Komaba S.P2- and P3-KxCoO2 as an electrochemical potassium intercalation host.Chem Commun2017;53:3693-6

[84]

Jha PK.Role of Co content on the electrode properties of P3-type K0.5Mn1-xCoxO2 potassium insertion materials.Inorg Chem2024;63:7137-45

[85]

Puneeth NPN,Kalai Selvan R.Improved K-ion diffusion kinetics of cobalt-substituted P3-type K0.67MnO2 electrodes for K-ion batteries.ACS Appl Energy Mater2024;7:2600-13

[86]

Zhang X,Wei Z.Layered P3-type K0.4Fe0.1Mn0.8Ti0.1O2 as a low-cost and zero-strain electrode material for both potassium and sodium storage.ACS Appl Mater Interfaces2021;13:18897-904

[87]

Liu CL,Huang HB,Wang ZW.Low-cost layered K0.45Mn0.9Mg0.1O2 as a high-performance cathode material for K-ion batteries.ChemElectroChem2019;6:2308-15

[88]

Ko W,Park H.Structural and electrochemical stabilization enabling high-energy P3-type Cr-based layered oxide cathode for K-ion batteries.Carbon Energy2024;6:e454

[89]

Chen H,Li Q.Layer-structured K0.5Mn0.8Cu0.1Mg0.1O2 for high-performance potassium-ion batteries by alleviating the phase transformation.J Mater Chem A2024;12:6261-8

[90]

Huang R,Lin J.Layered K0.54Mn0.78Mg0.22O2 as a high-performance cathode material for potassium-ion batteries.Nano Res2022;15:3143-9

[91]

Xu YS,Wang D.Enabling reversible phase transition on K5/9Mn7/9Ti2/9O2 for high-performance potassium-ion batteries cathodes.Energy Storage Mater2020;31:20-6

[92]

Xiao Z,Xu L.Suppressing the Jahn-Teller effect in Mn-based layered oxide cathode toward long-life potassium-ion batteries.Adv Funct Mater2022;32:2108244

[93]

Yin X,Yang Q.Suppression of Jahn-Teller distortion in a layered Mn-based oxide cathode with Li substitution toward achieving stable K-storage.New J Chem2024;48:9352-7

[94]

Gao XW,Li Q,Liu Z.A synergistic pinning effect in a layer-structured oxide cathode for enhancing stability towards potassium-ion batteries.J Mater Chem A2024;12:15676-84

[95]

Zhang Z,Zhao J.Fluorine-doped K0.39Mn0.77Ni0.23O1.9F0.1 microspheres with highly reversible oxygen redox reaction for potassium-ion battery cathode.Chin Chem Lett2025;36:109907

[96]

Kim Y,Lee J.Stabilization of layered-type potassium manganese oxide cathode with fluorine treatment for high-performance K-ion batteries.J Power Sources2023;588:233729

[97]

Xu YS,Zhang QH.Anion doping for layered oxides with a solid-solution reaction for potassium-ion battery cathodes.ACS Appl Mater Interfaces2022;14:13379-87

[98]

Xu X,Rahman MM.Promoting reversibility of layered potassium cathode through interstitial doping.Chem Eng J2023;477:147021

[99]

Wu L,Lyu W.Rational regulation of high-voltage stability in potassium layered oxide cathodes.ACS Nano2024;18:13415-27

[100]

Jo JH,Choi J,Myung ST.Layered K0.28MnO2·0.15H2O as a cathode material for potassium-ion intercalation.ACS Appl Mater Interfaces2019;11:43312-9

[101]

Lin B,Fang L.Birnessite nanosheet arrays with high K content as a high-capacity and ultrastable cathode for K-ion batteries.Adv Mater2019;31:e1900060

[102]

Zhao Z,Pan Y.A new Mn-based layered cathode with enlarged interlayer spacing for potassium ion batteries.J Colloid Interface Sci2023;652:231-9

[103]

Luo RJ,Ding JY.Suppressing Jahn-Teller distortion and phase transition of K0.5MnO2 by K-site Mg substitution for potassium-ion batteries.Energy Storage Mater2022;47:408-14

[104]

Caixiang Z,Zhou J,Lu B.Interlayer-engineering and surface-substituting manganese-based self-evolution for high-performance potassium cathode.Adv Energy Mater2023;13:2203126

[105]

Zhao C,Lu Y,Hu YS.High-entropy layered oxide cathodes for sodium-ion batteries.Angew Chem Int Ed2020;59:264-9

[106]

Ding X,Wang X.Multi-element doping induced transition metal disordered layered oxide for rapid and stable potassium storage.Chem Eng J2023;466:143331

[107]

Chu S,Tian J.High entropy-induced kinetics improvement and phase transition suppression in K-ion battery layered cathodes.ACS Nano2024;18:337-46

[108]

Cai Y,Chang F.Entropy-stabilized layered K0.6Ni0.05Fe0.05Mg0.05Ti0.05Mn0.725O2 as a high-rate and stable cathode for potassium-ion batteries.ACS Appl Mater Interfaces2023;15:48277-86

[109]

Zeng G,Ali U.The local disorder induced by high-entropy doping results in highly stable cathode materials for aqueous potassium-ion batteries.Appl Catal B Environ Energy2024;351:123996

[110]

Liu B,Zhang L,Li L.Manganese charge redistribution induced by high-entropy charge compensation mechanism for aqueous potassium-ion batteries.Energy Storage Mater2024;66:103221

[111]

Park S,Park Y,Hwang J.A new material discovery platform of stable layered oxide cathodes for K-ion batteries.Energy Environ Sci2021;14:5864-74

[112]

Huang Y,Lin H.S Synergistically enhanced structural, thermal and interfacial stability of K0.45MnO2 via tailoring the local structure for high-energy and high-power potassium-ion batteries.Chem Eng J2023;453:139571

[113]

Mu L,Li Y.Prototype sodium-ion batteries using an air-stable and Co/Ni-Free O3-layered metal oxide cathode.Adv Mater2015;27:6928-33

[114]

Wang H,Xiao Z.Double-layer phosphates coated Mn-based oxide cathodes for highly stable potassium-ion batteries.Energy Storage Mater2023;58:101-9

[115]

Chen J,Gao C.Phase-transition-free rivets for layered oxide potassium cathodes.Nano Res2024;17:9671-8

[116]

Deng Q,Luo Z.Atomic layer deposition of Al2O3 on organic potassium terephthalate with enhanced K-storage behavior for K-ion batteries.Ionics2020;26:1805-12

[117]

Fu Q,Zhou W.Regulating cathode surface hydroxyl chemistry enables superior potassium storage.Proc Natl Acad Sci USA2023;120:e2301622120 PMCID:PMC10372561

[118]

Li S,Bian YH.Protective layer constructed by liquid phase quenching for long lifespan potassium ion batteries.Chem Eng J2024;496:154382

[119]

Shi H,Wang X.Surface residual alkali reverse utilization: stabilizing the lay-structured oxide cathode for high stability potassium ion batteries.Chem Eng J2024;484:149574

[120]

Cai Y,Pang D.Layered transition metal oxides prepared by plasma-enhanced sintering technique as environmentally stable cathode for potassium-ion batteries.Materialia2023;27:101674

[121]

Deng T,Luo C.Self-templated formation of P2-type K0.6CoO2 microspheres for high reversible potassium-ion batteries.Nano Lett2018;18:1522-9

[122]

Zhang Z,Liao J.Uniform P2-K0.6CoO2 microcubes as a high-energy cathode material for potassium-ion batteries.Nano Lett2023;23:694-700

[123]

Chen L,Hao C.Interlayer engineering of KxMnO2 enables superior alkali metal ion storage for advanced hybrid capacitors.ChemElectroChem2022;9:e202200059

[124]

Wang X,Niu C.Earth abundant Fe/Mn-based layered oxide interconnected nanowires for advanced K-ion full batteries.Nano Lett2017;17:544-50

[125]

Chong S,Chen Y.Mn-based layered oxide microspheres assembled by ultrathin nanosheets as cathode material for potassium-ion batteries.Electrochim Acta2019;293:299-306

[126]

Xu S,Yu M,Chen L.Layered P3 type K0.48Ni0.2Co0.2Mn0.6O2 with microspherical and microcubic mixed morphology as a cathode material for potassium-ion batteries.Mater Lett2020;270:127733

[127]

Zhang Z,Duan L.Self-templated construction of peanut-like P3-type K0.45Mn0.5Co0.5O2 for highly reversible potassium storage.J Mater Chem A2022;10:554-60

[128]

Duan L,Xu Y.Cocoon-shaped P3-type K0.5Mn0.7Ni0.3O2 as an advanced cathode material for potassium-ion batteries.J Energy Chem2023;76:332-8

[129]

Duan L,Zhang Z.A high-performance cathode for potassium-ion batteries based on uniform P3-type K0.5Mn0.8Co0.1Ni0.1O2 porous microcuboids.J Mater Chem A2021;9:22820-6

[130]

Hao J,Zhou J.Yolk-Shell P3-type K0.5[Mn0.85Ni0.1Co0.05]O2: a low-cost cathode for potassium-ion batteries.Energy Environ Mater2022;5:261-9

[131]

Lv J,Hao J.Single-crystalline Mn-based oxide as a high-rate and long-life cathode material for potassium-ion battery.eScience2023;3:100081

[132]

Zhao S,Munroe P,Wang G.Construction of hierarchical K1.39Mn3O6 spheres via AlF3 coating for high-performance potassium-ion batteries.Adv Energy Mater2019;9:1803757

[133]

Weng J,Sun C.Construction of hierarchical K0.7Mn0.7Mg0.3O2 microparticles as high capacity & long cycle life cathode materials for low-cost potassium-ion batteries.Chem Eng J2020;392:123649

[134]

Duan L,Liao J.A P2/P3 biphasic layered oxide composite as a high-energy and long-cycle-life cathode for potassium-ion batteries.Angew Chem Int Ed2024;63:e202400868

[135]

Liu CL,Huang HB,Wang ZW.Influence of Na-substitution on the structure and electrochemical properties of layered oxides K0.67Ni0.17Co0.17Mn0.66O2 cathode materials.Electrochim Acta2018;286:114-22

[136]

Ni L,Li C.Electrolyte formulation strategies for potassium-based batteries.Exploration2022;2:20210239 PMCID:PMC10191034

[137]

Wang H,Chu X.Flame-retardant nonaqueous electrolytes for high-safety potassium-ion batteries.Small Methods2024;8:e2301104

[138]

He G.Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries.ACS Energy Lett2017;2:1122-7

[139]

Zhao S,Zhang B.Highly-solvating electrolyte enables mechanically stable and inorganic-rich cathode electrolyte interphase for high-performing potassium-ion batteries.Adv Mater2024;36:e2405184

[140]

Liu S,Zhang Q.An intrinsically non-flammable electrolyte for high-performance potassium batteries.Angew Chem Int Ed2020;59:3638-44

[141]

Zhang D,Ma X.Nonflammable phosphate-based electrolyte for safe and stable potassium batteries enabled by optimized solvation effect.Angew Chem Int Ed2024;63:e202405153

[142]

Gu M,Yang Q.Anion-reinforced solvation structure enables stable operation of ether-based electrolyte in high-voltage potassium metal batteries.Angew Chem Int Ed2024;63:e202402946

[143]

Gao Y,Ou B.A dilute fluorinated phosphate electrolyte enables 4.9 v-class potassium ion full batteries.Adv Funct Mater2023;33:2305829

[144]

Fan L,Hu Y.A tailored electrolyte for safe and durable potassium ion batteries.Energy Environ Sci2023;16:305-15

[145]

Li F,Cui A.In situ structure modulation of cathode-electrolyte interphase for high-performance potassium-ion battery.Adv Funct Mater2024;34:2313146

[146]

Zhang H,Li W.Enabling high-performance potassium-ion batteries by manipulating interfacial chemistry.Adv Funct Mater2024;34:2312368

[147]

Wang T,Zhou M.In situ ions induced formation of KxF-rich SEI layers toward ultrastable life of potassium-ion batteries.Adv Mater2024;36:e2401943

[148]

Hosaka T,Kubota K,Komaba S.Development of KPF6/KFSA binary-salt solutions for long-life and high-voltage K-ion batteries.ACS Appl Mater Interfaces2020;12:34873-81

[149]

Yang X.Electrochemical techniques in battery research: a tutorial for nonelectrochemists.Adv Energy Mater2019;9:1900747

[150]

Liu X,Wu Y,Sun Y.In-depth mechanism understanding for potassium-ion batteries by electroanalytical methods and advanced in situ characterization techniques.Small Methods2021;5:e2101130

[151]

Zhao S,Xie G.High-efficiency cathode potassium compensation and interfacial stability improvement enabled by dipotassium squarate for potassium-ion batteries.Energy Environ Sci2022;15:3015-23

[152]

Yu Q,Wang W.K0.6CoO2-xNx porous nanoframe: a co-enhanced ionic and electronic transmission for potassium ion batteries.Chem Eng J2020;396:125218

[153]

Hwang JY,Yu TY.A new P2-type layered oxide cathode with superior full-cell performances for K-ion batteries.J Mater Chem A2019;7:21362-70

[154]

Lei K,Yin Z,Li F.Dual interphase layers in situ formed on a manganese-based oxide cathode enable stable potassium storage.Chem2019;5:3220-31

[155]

Zhang Q,Pang WK.Structural insight into layer gliding and lattice distortion in layered manganese oxide electrodes for potassium-ion batteries.Adv Energy Mater2019;9:1900568

[156]

Liu L,Wang W.A P3-type K1/2Mn5/6Mg1/12Ni1/12O2 cathode material for potassium-ion batteries with high structural reversibility secured by the Mg-Ni pinning effect.ACS Appl Mater Interfaces2021;13:28369-77

[157]

Liang J,Meng X.P3-type K0.45Co1/12Mg1/12Mn5/6O2 as a superior cathode material for potassium-ion batteries with high structural reversibility ensured by Co-Mg Co-substitution.J Mater Chem A2021;9:17261-9

[158]

Jo JH,Park YJ.P2-K0.75[Ni1/3Mn2/3]O2 cathode material for high power and long life potassium-ion batteries.Adv Energy Mater2020;10:1903605

[159]

Jha PK,Sachdeva D.Chimie douce derived novel P2-type layered oxide for potassium-ion batteries.Adv Funct Mater2024;34:2410665

[160]

Sohn W,Lim GH.Ion-exchange-assisted Li0.27K0.72Ni0.6Co0.2Mn0.2O2 cathode in potassium-ion batteries.J Alloys Compd2022;898:162904

[161]

Liu ZD,Mu JJ.Multiphase riveting structure for high power and long lifespan potassium-ion batteries.Adv Funct Mater2024;34:2315006

[162]

Luo K,Hao R.Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen.Nat Chem2016;8:684-91

[163]

Maitra U,Somerville JW.Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2.Nat Chem2018;10:288-95

[164]

Liu B,Ali U.Solid-solution reaction suppresses the Jahn-Teller effect of potassium manganese hexacyanoferrate in potassium-ion batteries.Chem Sci2022;13:10846-55 PMCID:PMC9491190

[165]

Pandey AK,Konuma I.P3-type layered K0.6Cr0.6Ti0.4O2 for potassium storage applications.Energy Adv2023;2:98-102

[166]

Dang R,Yang Y.Designing advanced P3-type K0.45Ni0.1Co0.1Mn0.8O2 and improving electrochemical performance via Al/Mg doping as a new cathode material for potassium-ion batteries.J Power Sources2020;464:228190

[167]

Zheng Y,Ji S.Zinc-doping strategy on P2-type Mn-based layered oxide cathode for high-performance potassium-ion batteries.Small2023;19:e2302160

[168]

Wang H,Xiao Z.Strain-modulated Mn-rich layered oxide enables highly stable potassium-ion batteries.Energy Storage Mater2024;67:103324

[169]

Ai R,Li S,Chen G.Selective lattice doping enables a low-cost, high-capacity and long-lasting potassium layered oxide cathode for potassium and sodium storage.Chemistry2024;30:e202400791

[170]

Xu YS,Zhang QH.Layered oxides with solid-solution reaction for high voltage potassium-ion batteries cathode.Chem Eng J2021;412:128735

PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

/