Giant spin Seebeck effect in two-dimensional V2S2O altermagnet

Timothy M. Ashani , Abdullah , Jisang Hong

Energy Materials ›› 2025, Vol. 5 ›› Issue (9) : 500111

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (9) :500111 DOI: 10.20517/energymater.2025.10
Article

Giant spin Seebeck effect in two-dimensional V2S2O altermagnet

Author information +
History +
PDF

Abstract

Altermagnet is an uncommon category of antiferromagnets distinguished by their non-overlapping spin-bands, drawing significant attention from researchers. However, while reports on their electronic and magnetic properties are increasing rapidly, the study on the transport properties is still in early stage. Therefore, we explored the orientational spin-dependent transport features of altermagnet V2S2O using Boltzmann transport technique. This altermagnet had 1.15 eV direct band gap energy and a critical temperature of 746 K. We obtained a directional spin-dependent feature in the band structure whose effect spans through all the spin-dependent transport parameters. We found a low isotropic lattice thermal conductivity of magnitude 0.2 Wm-1K-1 at 300 K. Above all, the V2S2O altermagnet displayed a giant spin-dependent Seebeck coefficient of about 1.8 mVK-1 at 300 K and at a small electron or hole doping. This value is multiple times greater than reported values for most transport materials. Besides, we also found a maximum figure of merit of 0.86 in the hole-doped systems. Thus, our findings suggest the possibility of pure spin current generation for possible applications in spintronics and thermoelectricity.

Keywords

Spintronic / spin-dependent / altermagnetic material / spin-polarized band / and transport properties

Cite this article

Download citation ▾
Timothy M. Ashani, Abdullah, Jisang Hong. Giant spin Seebeck effect in two-dimensional V2S2O altermagnet. Energy Materials, 2025, 5(9): 500111 DOI:10.20517/energymater.2025.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

I; The PRX Editors. Editorial: altermagnetism-a new punch line of fundamental magnetism.Phys Rev X2022;12:04002

[2]

Manchon A,Nitta J,Duine RA.New perspectives for Rashba spin-orbit coupling.Nat Mater2015;14:871-82

[3]

Zhang F,Xu Z.Prediction of the TiS2 bilayer with self-intercalation: robust ferromagnetic semiconductor with a high curie temperature.J Phys Chem C2025;129:5577-88

[4]

Guo SD,Wang G.How to produce spin-splitting in antiferromagnetic materials.J Phys Condens Matter2024;36:215804

[5]

Qi Y,Zeng H.Spin-layer coupling in two-dimensional altermagnetic bilayers with tunable spin and valley splitting properties.Phys Rev B2024;110:014442

[6]

Ma HY,Li N.Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current.Nat Commun2021;12:2846 PMCID:PMC8121910

[7]

Guo Y,Janson O,van den Brink J.Spin-split collinear antiferromagnets: a large-scale ab-initio study.Materials Today Physics2023;32:100991

[8]

Šmejkal L,Jungwirth T.Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry.Phys Rev X2022;12:031042

[9]

Šmejkal L,Jungwirth T.Emerging research landscape of altermagnetism.Phys Rev X2022;12:040501

[10]

Naka M,Kusunose H,Motome Y.Spin current generation in organic antiferromagnets.Nat Commun2019;10:4305 PMCID:PMC6754401

[11]

Zhu Y,Li Y.Multipiezo effect in altermagnetic V2SeTeO monolayer.Nano Lett2024;24:472-8

[12]

Bhowal S.Ferroically ordered magnetic octupoles in d-wave altermagnets.Phys Rev X2024;14:011019

[13]

Guo S,Cheng K,Ang YS.Piezoelectric altermagnetism and spin-valley polarization in Janus monolayer Cr2SO.Appl Phys Lett2023;123:082401

[14]

Gao ZF,Zeng B.AI-accelerated discovery of altermagnetic materials.arXiv2023;arXiv:2311.04418Available online: http://arxiv.org/abs/2311.04418 (accessed 2025-05-14).

[15]

Mazin II.Altermagnetism in MnTe: origin, predicted manifestations, and routes to detwinning.Phys Rev B2023;107:L100418

[16]

Mazin II,Johannes MD,Šmejkal L.Prediction of unconventional magnetism in doped FeSb2.Proc Natl Acad Sci U S A2021;118:e2108924118 PMCID:PMC8594493

[17]

Sødequist J.Two-dimensional altermagnets from high throughput computational screening: symmetry requirements, chiral magnons, and spin-orbit effects.Appl Phys Lett2024;124:182409

[18]

Zeng S.Description of two-dimensional altermagnetism: categorization using spin group theory.Phys Rev B2024;110:.054406

[19]

Occhialini CA,Fan S.Strain-modulated anisotropic electronic structure in superconducting RuO2 films.Phys Rev Materials2022;6:084802

[20]

Gonzalez Betancourt RD,Gonzalez-Hernandez R.Spontaneous anomalous hall effect arising from an unconventional compensated magnetic phase in a semiconductor.Phys Rev Lett2023;130:036702

[21]

Šmejkal L,González-hernández R,Jungwirth T.Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling.Phys Rev X2022;12:011028

[22]

Ahn K,Lee K.Antiferromagnetism in RuO2 as d-wave pomeranchuk instability.Phys Rev B2019;99:184432

[23]

Hayami S,Kusunose H.Momentum-dependent spin splitting by collinear antiferromagnetic ordering.J Phys Soc Jpn2019;88:123702

[24]

Yuan L,Luo J,Zunger A.Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets.Phys Rev B2020;102:014422

[25]

Sukhachov PO,Linder J.Thermoelectric effect in altermagnet-superconductor junctions.Phys Rev B2024;110:094508

[26]

Bai H,Zhou YJ.Efficient spin-to-charge conversion via altermagnetic spin splitting effect in antiferromagnet RuO2.Phys Rev Lett2023;130:216701

[27]

Lyu K.Orientation-dependent spin-polarization and transport properties in altermagnet based resonant tunneling junctions.Results Phys2024;59:107564

[28]

Fedchenko O,Akashdeep A.Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2.Sci Adv2024;10:eadj4883

[29]

Krempaský J,D'Souza SW.Altermagnetic lifting of Kramers spin degeneracy.Nature2024;626:517-22 PMCID:PMC10866710

[30]

Fan Y,Wang W.Robust magnetic-field-free perpendicular magnetization switching by manipulating spin polarization direction in RuO2/[Pt/Co/Pt] heterojunctions.ACS Nano2024;18:26350-8

[31]

Kresse G.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Comput Mater Sci1996;6:15-50

[32]

Kresse G.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B1996;54:11169

[33]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[34]

Dion M,Schröder E,Lundqvist BI.Van der Waals density functional for general geometries.Phys Rev Lett2004;92:246401

[35]

Pack JD.“Special points for Brillouin-zone integrations”-a reply.Phys Rev B1977;16:1748

[36]

Heyd J,Ernzerhof M.Hybrid functionals based on a screened Coulomb potential.J Chem Phys2003;118:8207-15

[37]

Heyd J,Ernzerhof M.Erratum: “Hybrid functionals based on a screened Coulomb potential” [J.J Chem Phys2006;124:219906

[38]

Vampire Curie temperature simulation tutorial. https://vampire.york.ac.uk/tutorials/simulation/curie-temperature/ (accessed 2025-05-14).

[39]

Madsen GK.BoltzTraP. A code for calculating band-structure dependent quantities.Comput Phys Commun2006;175:67-71

[40]

Togo A,Tanaka I.Distributions of phonon lifetimes in Brillouin zones.Phys Rev B2015;91:094306

[41]

Yu Y.High storage capacity and small volume change of potassium-intercalation into novel vanadium oxychalcogenide monolayers V2S2O, V2Se2O and V2Te2O: an ab initio DFT investigation.Appl Surf Sci2021;546:149062

[42]

Evans RF,Chureemart P,Ellis MO.Atomistic spin model simulations of magnetic nanomaterials.J Phys Condens Matter2014;26:103202

[43]

Casu G,Fiorentini V.Efficient thermoelectricity in Sr2Nb2O7 with energy-dependent relaxation times.Phys Rev Materials2020;4:075404

[44]

Marfoua B.Graphene induced high thermoelectric performance in ZnO/graphene heterostructure.Adv Mater Interfaces2023;10:2202387

[45]

Ullah A,Hong J.Giant spin seebeck effect with highly polarized spin current generation and piezoelectricity in flexible V2SeTeO altermagnet at room temperature.Mater Today Phys2024;47:101539

[46]

Jaworski CM,Mack S,Heremans JP.Observation of the spin-Seebeck effect in a ferromagnetic semiconductor.Nat Mater2010;9:898-903

[47]

Reitz D,Yuan W,Tserkovnyak Y.Spin Seebeck effect near the antiferromagnetic spin-flop transition.Phys Rev B2020;102:020408

[48]

Wadhwa P,Filippetti A.Giant spin-dependent Seebeck effect from fully spin-polarized carriers in n-doped EuTiO3: a prototype material for spin-caloritronic applications.J Mater Chem A2023;11:6842-53

[49]

Priyanka D, Venkatesh G, Srinivasan M, Palanisamy G, Ramasamy P. Half metallic heusler alloys XMnGe (X = Ti, Zr, Hf) for spin flip and thermoelectric device application - material computations.Mater Sci Semicond Process2023;159:107367

PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

/