In-situ polymerized and crosslinked electrolytes with interchangeable Li/Na transport for battery applications

Harmandeep Singh , Josh T. Damron , M Shahriar , Mary Danielson , Rob Beard , Rachel Eberhard , Georgios Polizos , Ivan Popov , Md Anisur Rahman , Alexei P. Sokolov , Catalin Gainaru

Energy Materials ›› 2025, Vol. 5 ›› Issue (12) : 500149

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (12) :500149 DOI: 10.20517/energymater.2025.07
Article

In-situ polymerized and crosslinked electrolytes with interchangeable Li/Na transport for battery applications

Author information +
History +
PDF

Abstract

The next generation of batteries requires electrolytes with high conductivity, mechanical stability, good adhesion with electrodes, wide electrochemical windows, and scalability. The present study introduces a concept of doped quasi single-ion conducting copolymers based on methacrylate-(trifluoromethanesulfonyl)imide (TFSI) and vinyl ethylene carbonate which at room temperature are mechanically robust and display ionic conductivities of ~0.1 mS/cm. These electrolytes can be polymerized/crosslinked in-situ, making them easily implementable in current battery manufacturing technologies. They also allow for switching between Li+ and Na+ transport using simple chemistry procedures. To demonstrate their potential for battery applications, the newly developed Li conductors have been tested in symmetric cells, exhibiting overall impedance below 350 Ohm and plating/stripping stability up to 1 mA/cm2. Moreover, lithium metal batteries incorporating this electrolyte and high-voltage Lithium Nickel Manganese Cobalt Oxide (NMC) cathodes show good capacity retention (~79%) during charging and discharging for 80 cycles at C/10 rate and a Coulombic efficiency close to 100% in the entire measurement range. The compositional, mechanical and electrochemical versatility of these electrolytes opens new venues for the design of polymer-based batteries capable of fast charging and extended cycle life, aligning with the current global green energy storage strategies.

Keywords

Polymer electrolytes / ion transport / electrochemical performance / batteries

Cite this article

Download citation ▾
Harmandeep Singh, Josh T. Damron, M Shahriar, Mary Danielson, Rob Beard, Rachel Eberhard, Georgios Polizos, Ivan Popov, Md Anisur Rahman, Alexei P. Sokolov, Catalin Gainaru. In-situ polymerized and crosslinked electrolytes with interchangeable Li/Na transport for battery applications. Energy Materials, 2025, 5(12): 500149 DOI:10.20517/energymater.2025.07

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Y,Dong S,Cui G.Recent advances in non-aqueous electrolyte for rechargeable Li-O2 batteries.Adv Energy Mater2016;6:1600751

[2]

Yang Y,Zhang Y.Challenges and prospects of low-temperature rechargeable batteries: electrolytes, interfaces, and electrodes.Adv Sci2024;11:2410318

[3]

Angell CA.Fast ion motion in glassy and amorphous materials.Solid State Ionics1983;9-10:3-16.

[4]

Ma M,Jiang B,Hu B.A review of all-solid-state electrolytes for lithium batteries: high-voltage cathode materials, solid-state electrolytes and electrode-electrolyte interfaces.Mater Chem Front2023;7:1268-97

[5]

Muldoon J,Boaretto N,di Noto V.Polymers: opening doors to future batteries.Polymer Reviews2015;55:208-46

[6]

Yi J,He P.Status and prospects of polymer electrolytes for solid-state Li-O2 (air) batteries.Energy Environ Sci2017;10:860-84

[7]

Lee MJ,Lee K.Elastomeric electrolytes for high-energy solid-state lithium batteries.Nature2022;601:217-22

[8]

Hu P,Duan Y,Cui G.Progress in nitrile-based polymer electrolytes for high performance lithium batteries.J Mater Chem A2016;4:10070-83

[9]

Stacy EW,Gobet M.Fundamental limitations of ionic conductivity in polymerized Ionic Liquids.Macromolecules2018;51:8637-45

[10]

Edman L,Ferry A,De Jonghe LC.Transport properties of the solid polymer electrolyte system P(EO)n LiTFSI.J Phys Chem B2000;104:3476-80

[11]

Mecerreyes D.Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes.Prog Polym Sci2011;36:1629-48

[12]

Eftekhari A.Synthesis and properties of polymerized ionic liquids.Eur Polym J2017;90:245-72

[13]

Zhu J,Zhao S,Belharouak I.Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: design, performance, and challenges.Adv Energy Mater2021;11:2003836

[14]

Gainaru C,Bocharova V.Mechanism of conductivity relaxation in liquid and polymeric electrolytes: direct link between conductivity and diffusivity.J Phys Chem B2016;120:11074-83

[15]

Fan F,Holt AP.Effect of molecular weight on the ion transport mechanism in polymerized ionic liquids.Macromolecules2016;49:4557-70

[16]

Bae J,Lee B.High-performance, printable quasi-solid-state electrolytes toward all 3D direct ink writing of shape-versatile Li-ion batteries.Energy Storage Mater2023;57:277-88

[17]

Ahmed F,Rahman MM.Remarkable conductivity of a self-healing single-ion conducting polymer electrolyte, poly(ethylene-co-acrylic lithium (fluoro sulfonyl)imide), for all-solid-state Li-ion batteries.ACS Appl Mater Interfaces2019;11:34930-8

[18]

Luo Y,Kang W.A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms.J Energy Chem2024;89:543-56

[19]

Pożyczka K,Dygas J.Ionic conductivity and lithium transference number of poly(ethylene oxide):LiTFSI system.Electrochim Acta2017;227:127-35

[20]

Song J,Wan C.Review of gel-type polymer electrolytes for lithium-ion batteries.J Power Sources1999;77:183-97

[21]

Lehmann ML,Gilmer D.Tailored crosslinking of Poly(ethylene oxide) enables mechanical robustness and improved sodium-ion conductivity.Energy Storage Mater2019;21:85-96

[22]

Li L,Lu Y.Suppression of dendritic lithium growth in lithium metal-based batteries.Chem Commun2018;54:6648-61

[23]

Lee HG,Lee JS.Dynamic observation of dendrite growth on lithium metal anode during battery charging/discharging cycles.npj Comput Mater2022;8:103

[24]

Maity A,Buganim Y,Leskes M.Tracking dendrites and solid electrolyte interphase formation with dynamic nuclear polarization-NMR spectroscopy.Nat Commun2024;15:9956 PMCID:PMC11570622

[25]

Bocharova V.Perspectives for polymer electrolytes: a view from fundamentals of ionic conductivity.Macromolecules2020;53:4141-57

[26]

Shan C,Liang M.A comprehensive review of single ion-conducting polymer electrolytes as a key component of lithium metal batteries: From structural design to applications.Energy Storage Mater2023;63:102955

[27]

Ghorbanzade P,Johansson P.Plasticized and salt-doped single-ion conducting polymer electrolytes for lithium batteries.RSC Adv2022;12:18164-7 PMCID:PMC9214883

[28]

Swift MW,Park J,Wu Y.Predicting low-impedance interfaces for solid-state batteries.Curr Opin Solid State Mater Sci2022;26:100990

[29]

Wang H,Kong X.Liquid electrolyte: the nexus of practical lithium metal batteries.Joule2022;6:588-616

[30]

Guan X,Zhang X,Li C.In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries.Chem Eng J2020;382:122935

[31]

He P,Choi YY,Nykaza JR.In-situ crosslinked gel polymer electrolytes based on ionic monomers as charge carriers for lithium-ion batteries.ECS Adv2024;3:010504

[32]

Shan X,Li Z.A polymer electrolyte with high cationic transport number for safe and stable solid Li-metal batteries.ACS Energy Lett2022;7:4342-51

[33]

Xiao G,Bai C,He Y.Progress and perspectives of in situ polymerization method for lithium-based batteries.Interdiscip Mater2023;2:609-34

[34]

Zhang Q,Lin Z.Highly safe and cyclable Li-metal batteries with vinylethylene carbonate electrolyte.Nano Energy2020;74:104860

[35]

Devaux D,Beaudoin E.Comparison of single-ion-conductor block-copolymer electrolytes with polystyrene-TFSI and polymethacrylate-TFSI structural blocks.Electrochim Acta2018;269:250-61

[36]

Au H,Titirici M.Beyond Li-ion batteries: performance, materials diversification, and sustainability.One Earth2022;5:207-11

[37]

Gao Y,Sun J,Wang J.High-energy batteries: beyond lithium-ion and their long road to commercialisation.Nano-Micro Lett2022;14:94 PMCID:PMC8986960

[38]

Tian Y,Rutt A.Promises and challenges of next-generation “beyond li-ion” batteries for electric vehicles and grid decarbonization.Chem Rev2021;121:1623-69

[39]

Vedhanarayanan B.Beyond lithium-ion: emerging frontiers in next-generation battery technologies.Front Batter Electrochem2024;3:1377192

[40]

Zhou D,Tkacheva A,Wang G.Polymer electrolytes for lithium-based batteries: advances and prospects.Chem2019;5:2326-52

[41]

Barbosa JC,Costa CM.Toward sustainable solid polymer electrolytes for lithium-ion batteries.ACS Omega2022;7:14457-64 PMCID:PMC9089680

[42]

Mu J,Shi L.Solid-state polymer electrolytes in lithium batteries: latest progress and perspective.Polym Chem2024;15:473-99

[43]

Song Z,Martinez-Ibañez M.A reflection on polymer electrolytes for solid-state lithium metal batteries.Nat Commun2023;14:4884 PMCID:PMC10423282

[44]

Dyre JC,Roling B.Fundamental questions relating to ion conduction in disordered solids.Rep Prog Phys2009;72:046501

[45]

Ishai PB,Caduff A,Feldman Y.Electrode polarization in dielectric measurements: a review.Meas Sci Technol2013;24:102001

[46]

Gainaru C,Popov I.Mechanisms controlling the energy barrier for ion hopping in polymer electrolytes.Macromolecules2023;56:6051-9

[47]

Evans J,Bruce PG.Electrochemical measurement of transference numbers in polymer electrolytes.Polymer1987;28:2324-8

[48]

Fong KD,Diederichsen KM,McCloskey BD.Ion transport and the true transference number in nonaqueous polyelectrolyte solutions for lithium ion batteries.ACS Cent Sci2019;5:1250-60 PMCID:PMC6661974

[49]

Maass P,Bunde A.Nonstandard relaxation behavior in ionically conducting materials.Phys Rev B1995;51:8164

[50]

Murch G.The haven ratio in fast ionic conductors.Solid State Ionics1982;7:177-98

[51]

Sangoro JR.Charge transport and glassy dynamics in ionic liquids.Acc Chem Res2012;45:525-32

[52]

Vargas-barbosa NM.Dynamic ion correlations in solid and liquid electrolytes: how do they affect charge and mass transport?.ChemElectroChem2020;7:367-85

[53]

Pothmann T,Gerken C,Schönhoff M.Overdetermination method for accurate dynamic ion correlations in highly concentrated electrolytes.Faraday Discuss2024;253:100-17

[54]

Ahmed MD,Khamzin A,Sokolov AP.Effect of ion mass on dynamic correlations in ionic liquids.J Phys Chem B2023;127:10411-21

[55]

Lorenz M,Nürnberg P.Local volume conservation in concentrated electrolytes is governing charge transport in electric fields.J Phys Chem Lett2022;13:8761-7

[56]

Arora P.Battery separators.Chem Rev2004;104:4419-62

[57]

Sheng J,Sun C.Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium-sulfur batteries.Adv Funct Mater2022;32:2203272

[58]

Knoche T,Reinhart G.A process model for the electrolyte filling of lithium-ion batteries.Procedia CIRP2016;41:405-10

PDF

518

Accesses

0

Citation

Detail

Sections
Recommended

/