A potential hydrogen isotope storage material Zr2Fe: deep exploration on phase transition behaviors and disproportionation mechanism

Zhiyi Yang , Yuxiao Jia , Yang Liu , Xuezhang Xiao , Tiao Ying , Xingwen Feng , Yan Shi , Changan Chen , Wenhua Luo , Lixin Chen

Energy Materials ›› 2025, Vol. 5 ›› Issue (1) : 500011

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (1) :500011 DOI: 10.20517/energymater.2024.83
Article

A potential hydrogen isotope storage material Zr2Fe: deep exploration on phase transition behaviors and disproportionation mechanism

Author information +
History +
PDF

Abstract

Tritium, a radioactive isotope of hydrogen, is exceptionally rare and valuable. The safe storage, controlled release and efficient capture of tritium are subject to focused research in the International Thermonuclear Experimental Reactor. However, the application of an efficient tritium-getter material remains a critical challenge. Zr2Fe alloys exhibit a strong ability to absorb low-concentration hydrogen isotopes, but their practicability suffers from disproportionation reaction. Yet, the essential de-/hydrogenation performances and disproportionation mechanism of Zr2Fe are inconclusive. Here, we designed a comprehensive series of measurements that demonstrate the ultra-low hydrogenation equilibrium pressure (2.68 × 10-8 Pa at 25 °C) and unique hydrogen-interacted phase transitions in Zr2Fe-H systems. Further kinetic and thermodynamic analyses reveal the causative reasons for disproportionation and determine the triggering temperature of the disproportionation reaction to be 375 °C in static hydrogen environments. Utilizing inversion of the Van't Hoff equation, higher-temperature hydrogen absorption models of Zr2Fe are developed, supporting a solution to the inaccuracy and inseparability of the general de-/hydrogenation and disproportionation, thereby verifying the unique disproportionation route (Zr2Fe/Zr2FeHx + H2 → ZrFe2 + ZrH2). Combined with the density functional theory (DFT) calculations, the de-/hydrogenation and disproportionation mechanisms and their interrelation can be explained in depth. This work supports the exploration and modification of the Zr2Fe-H and other metal hydride storage systems in future studies.

Keywords

Tritium-getter materials / Zr2Fe alloy / phase transition / disproportionation mechanism / DFT calculations

Cite this article

Download citation ▾
Zhiyi Yang, Yuxiao Jia, Yang Liu, Xuezhang Xiao, Tiao Ying, Xingwen Feng, Yan Shi, Changan Chen, Wenhua Luo, Lixin Chen. A potential hydrogen isotope storage material Zr2Fe: deep exploration on phase transition behaviors and disproportionation mechanism. Energy Materials, 2025, 5(1): 500011 DOI:10.20517/energymater.2024.83

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Komm M.ITER: The giant fusion reactor. Bringing a sun to earth.Fusion Sci Technol2020;76:696-7

[2]

Liang Z,Qi J,Chen L.ZrCo-based hydrogen isotopes storage alloys: A review.J Alloys Compd2023;932:167552

[3]

Anand N,Jat RA,Mukerjee S.Hydrogen isotope effect on thermodynamic properties of Pd0.9X0.1 (X = Cu, Ag and Au) alloys.Int J Hydrog Energy2017;42:3136-41

[4]

Shuai M,Wang Z,Zou J.Hydrogen absorption-desorption properties of UZr0.29 alloy.J Nucl Mater2002;301:203-9

[5]

Yao Z,Liang Z.An in-depth study on the thermodynamics and kinetics of disproportionation behavior in ZrCo-H systems.J Mater Chem A2020;8:9322-30

[6]

Wang F,Ding C.Recent progress on the hydrogen storage properties of ZrCo-based alloys applied in international thermonuclear experimental reactor (ITER).Prog Nat Sci Mater Int2017;27:58-65

[7]

Kou H,Luo W.Experimental study on full-scale ZrCo and depleted uranium beds applied for fast recovery and delivery of hydrogen isotopes.Appl Energy2015;145:27-35

[8]

Glugla M,Dörr L,Haange R.The inner deuterium/tritium fuel cycle of ITER.Fusion Eng Des2003;69:39-43

[9]

Bhattacharyya R.Solid state storage of hydrogen and its isotopes: an engineering overview.Renew Sust Energy Rev2015;41:872-83

[10]

Liu Y,Xiao X.Enhancing disproportionation resistance of Zr2Co-based alloys by regulating the binding energy of H atom.Renew Energy2024;233:121153

[11]

Qi J,Xiao X.Isotope engineering achieved by local coordination design in Ti-Pd co-doped ZrCo-based alloys.Nat Commun2024;15:2883 PMCID:PMC10991433

[12]

Hara M,Kaneko Y.Hydrogen-induced disproportionation of Zr2M (M=Fe, Co, Ni) and reproportionation.J Alloy Compd2003;352:218-25

[13]

Ruz P.An investigation of hydriding performance of Zr2-xTixNi (x=0.0, 0.3, 0.7, 1.0) alloys.J Alloy Compd2015;627:123-31

[14]

Liu Y,Xiao X.Deep insight of unique phase transition behaviors and mechanism in Zr2Co-H isotope system with ultra-low equilibrium pressure.Rare Met2024;43:212-24

[15]

Liu Y,Zhou P.A review of classical hydrogen isotopes storage materials.Mater Rep: Energy2024;4:100250

[16]

Fukada S.Empirical expression for the pressure-composition-temperature curve of the Zr2Fe-deuterium system.J Alloy Compd1996;234:L7-L10

[17]

Prigent J,Leoni E.Hydrogen trapping properties of Zr-based intermetallic compounds in the presence of CO contaminant gas.J Alloy Compd2011;509:S801-3

[18]

Song J,Hu X,Wang S.Activation and disproportionation of Zr2Fe alloy as hydrogen storage material.Molecules2019;24:1542 PMCID:PMC6515547

[19]

Janot R,Percheron-guégan A.Development of a hydrogen absorbing layer in the outer shell of high pressure hydrogen tanks.Mater Sci Eng: B2005;123:187-93

[20]

Pitt M,Fjellvåg H.An in situ neutron diffraction study of the thermal disproportionation of the Zr2FeD5 system.J Alloy Compd2011;509:5515-24

[21]

Sharp JH,Achar BNN.Numerical data for some commonly used solid state reaction equations.J Am Ceram Soc1966;49:379-82

[22]

Jones L,Nicklin T.Comparison of experimental kinetic decomposition data with master data using a linear plot method.Thermochimica Acta1975;13:240-5

[23]

Xu F,Yang D,Qiao Y.Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: pyrolysis behaviors and kinetic analysis.Energy Convers Manage2018;171:1106-15

[24]

Jia Y,Wang J.Inducing one-step dehydrogenation of magnesium borohydride via confinement in robust dodecahedral nitrogen-doped porous carbon scaffold.Adv Mater2024;36:e2406152

[25]

Kresse G.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B1996;54:11169-86

[26]

Forozani G,Baizaee SM.Structural, electronic and magnetic properties of CoZrIrSi quaternary heusler alloy: first-principles study.J Alloy Compd2020;815:152449

[27]

Momma K.VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data.J Appl Crystallogr2011;44:1272-6

[28]

Song C,Ye R.Hydrogen diffusion and anti-disproportionation properties in ZrCo alloys: the effect of Sc, V, and Ni dopants.Int J Hydrog Energy2023;48:23607-19

[29]

Guo X,Kou L.Data-driven pursuit of electrochemically stable 2D materials with basal plane activity toward oxygen electrocatalysis.Energy Environ Sci2023;16:5003-18

[30]

Qi J,Xiao X.Effect of isostructural phase transition on cycling stability of ZrCo-based alloys for hydrogen isotopes storage.Chem Eng J2023;455:140571

[31]

Bogdanović B.Catalyzed complex metal hydrides.MRS Bull2002;27:712-6

[32]

Yao Z,Liang Z.Improvement on the kinetic and thermodynamic characteristics of Zr1-xNbxCo (x = 0-0.2) alloys for hydrogen isotope storage and delivery.J Alloy Compd2019;784:1062-70

[33]

Zhou Z,Bollas GM.Kinetics of NiO reduction by H2 and Ni oxidation at conditions relevant to chemical-looping combustion and reforming.Int J Hydrog Energy2014;39:8535-56

[34]

Pielichowski K.Non-oxidative thermal degradation of poly (ethylene oxide): kinetic and thermoanalytical study.J Anal Appl Pyrolysis2005;73:131-8

[35]

Khawam A.Solid-state kinetic models: basics and mathematical fundamentals.J Phys Chem B2006;110:17315-28

[36]

Martens A,Krummer MC.Facile and systematic access to the least-coordinating WCA [(RFO)3Al-F-Al(ORF)3]- and its more lewis-basic brother [F-Al(ORF)3]- (RF = C(CF3)3).Chem Sci2018;9:7058-68

[37]

Yang ZY,Zhu M,Cheng JP.Superior rate-capability and long-lifespan carbon nanotube-in-nanotube@Sb2S3 anode for lithium-ion storage.J Mater Chem A2021;9:22334-46

[38]

Han B,Wang J.The structural, energetic and dehydrogenation properties of pure and Ti-doped Mg (0001) /MgH2 (110) interfaces.J Mater Chem A2023;11:26602-16

[39]

Wolverton C,Asta M.Hydrogen in aluminum: first-principles calculations of structure and thermodynamics.Phys Rev B2004;69

[40]

Dompablo ME, Tartaj P, Amarilla JM, Amador U. Computational investigation of Li insertion in Li3VO4.Chem Mater2016;28:5643-51

[41]

Nagasako N,Miwa K.First-principles calculations of C14 -type laves phase Ti-Mn hydrides.Phys Rev B2002;66

[42]

Sun S,Liu W.Lattice pinning in MoO3 via coherent interface with stabilized Li+ intercalation.Nat Commun2023;14:6662 PMCID:PMC10589268

[43]

Li C,Liu H.Picturing the gap between the performance and US-DOE's hydrogen storage target: a data-driven model for MgH2 dehydrogenation.Angew Chem Int Ed Engl2024;63:e202320151

PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

/