Scalable fabrication of inch-sized FAPbI3 perovskite wafers for highly sensitive near-infrared photodetection

Chao Li , Zuolin Zhang , Chenglin Wang , Mengjia Li , Jike Ding , Cong Chen

Energy Materials ›› 2024, Vol. 4 ›› Issue (6) : 400077

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (6) :400077 DOI: 10.20517/energymater.2024.54
Article

Scalable fabrication of inch-sized FAPbI3 perovskite wafers for highly sensitive near-infrared photodetection

Author information +
History +
PDF

Abstract

Perovskite wafers, with superior optoelectronic properties and stability, show great promise for photovoltaic and photoelectric applications. However, traditional solution growth methods struggle with crystallization control and phase purity, while solid-phase synthesis methods encounter high-density grain boundary traps. To tackle these issues, we devised a scalable method combining physical thermal field and chemical bonding to fabricate inch-sized FAPbI3 wafers, enabling efficient near-infrared photodetection. By integrating a 120 °C hot-pressing to stabilize the photoactive α phase and polyaniline polymer to conduct and passivate the grain boundaries, we obtained quasi-single crystal FAPbI3 wafers on a large scale. This approach overcomes the critical challenges of phase impurities and high-density defects, enhancing the phase stability of the FAPbI3 wafers. As a result, the FAPbI3 wafer-based photodetector exhibits an impressive external quantum efficiency of 312% at 854 nm near-infrared wavelength at 5 V bias, accompanied by a detectivity (D*) of 4.69 × 1014 Jones and rapid response time in microsecond-scale. This performance surpasses conventional solution-grown single crystals, providing a scalable foundation for future integrated perovskite optoelectronic devices.

Keywords

FAPbI3 wafer / NIR photodetectors / hot-pressing / conductive polyaniline polymers / grain boundary

Cite this article

Download citation ▾
Chao Li, Zuolin Zhang, Chenglin Wang, Mengjia Li, Jike Ding, Cong Chen. Scalable fabrication of inch-sized FAPbI3 perovskite wafers for highly sensitive near-infrared photodetection. Energy Materials, 2024, 4(6): 400077 DOI:10.20517/energymater.2024.54

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cai Y,Song C,Han W.Optical nano-agents in the second near-infrared window for biomedical applications.Chem Soc Rev2019;48:22-37

[2]

Hong G,Dai H.Near-infrared fluorophores for biomedical imaging.Nat Biomed Eng2017;1:0010

[3]

Shang Z,Meng Q,Zhang Z.A near-infrared fluorescent probe for rapid and on-site detection of sulfur dioxide derivative in biological, food and environmental systems.J Hazard Mater2024;465:133165

[4]

Kim W,Ahn D.Monolithic perovskite-silicon dual-band photodetector for efficient spectral light discrimination.Adv Sci2024;11:2308840 PMCID:PMC11151070

[5]

Adinolfi V.Photovoltage field-effect transistors.Nature2017;542:324-7

[6]

Song L,Hao Q.Broadband photodetector based on SnTe nanofilm/n-Ge heterostructure.Nanotechnology2022;33:425203

[7]

Wu D,Wang C.Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation.ACS Nano2021;15:10119-29

[8]

Mei L,Shen C.Hybrid halide perovskite-based near-infrared photodetectors and imaging arrays.Adv Opt Mater2022;10:2102656

[9]

Ren YX,He B.Improvement on performances of graphene-PbSe Schottky photodetector via oxygen-sensitization of PbSe.Mater Lett2019;236:194-6

[10]

Duan L,Guan X.Quantum dots for photovoltaics: a tale of two materials.Adv Energy Mater2021;11:2100354

[11]

Gao Y,Pu K.Low-voltage-modulated perovskite/organic dual-band photodetectors for visible and near-infrared imaging.Sci Bull2022;67:1982-90

[12]

Li C,Wang F.Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging.Light Sci Appl2020;9:31 PMCID:PMC7054320

[13]

Liu CH,Norris TB.Graphene photodetectors with ultra-broadband and high responsivity at room temperature.Nat Nanotechnol2014;9:273-8

[14]

Arnold MS,Renshaw CK.Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors.Nano Lett2009;9:3354-8

[15]

Xie C,Zeng L.Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors.ACS Nano2014;8:4015-22

[16]

Zhai T,Ma Y.One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection.Chem Soc Rev2011;40:2986-3004

[17]

Rong Y,Hu Y.Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells.Nat Commun2017;8:14555 PMCID:PMC5333356

[18]

Zhou H,Song Z.Self-powered all-inorganic perovskite microcrystal photodetectors with high detectivity.J Phys Chem Lett2018;9:2043-8

[19]

Han Q,Sun P.Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties.Adv Mater2016;28:2253-8

[20]

Wang H.Perovskite-based photodetectors: materials and devices.Chem Soc Rev2017;46:5204-36

[21]

Muscarella LA,Sanchez S.Crystal orientation and grain size: do they determine optoelectronic properties of MAPbI3 perovskite?.J Phys Chem Lett2019;10:6010-8

[22]

Elumalai N,Wang D.Perovskite solar cells: progress and advancements.Energies2016;9:861

[23]

Saki Z,Taghavinia N,Saliba M.Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells.Energy Environ Sci2021;14:5690-722

[24]

Shrestha S,Matt GJ.High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers.Nature Photon2017;11:436-40

[25]

Yang B,Wu H.Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging.Nat Commun2019;10:1989 PMCID:PMC6491557

[26]

Jing H,Ma RM.Flexible ultrathin single-crystalline perovskite photodetector.Nano Lett2020;20:7144-51

[27]

Leupold N.Recent advances and perspectives on powder-based halide perovskite film processing.Adv Funct Mater2021;31:2007350

[28]

He Y,Jung HJ.High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals.Nat Commun2018;9:1609 PMCID:PMC5913317

[29]

Zheng Z,Hu Y,Mei A.Development of formamidinium lead iodide-based perovskite solar cells: efficiency and stability.Chem Sci2022;13:2167-83 PMCID:PMC8865136

[30]

Ma C,Lee SH.Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells.Science2023;379:173-8

[31]

Lee JW,Seok SI,Park NG.Rethinking the A cation in halide perovskites.Science2022;375:eabj1186

[32]

Zhang Z,Li R.Suppressing ion migration by synergistic engineering of anion and cation toward high-performance inverted perovskite solar cells and modules.Adv Mater2024;36:e2313860

[33]

Tan S,Yavuz I.Stability-limiting heterointerfaces of perovskite photovoltaics.Nature2022;605:268-73

[34]

Zhang F,Yao C.Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells.Science2022;375:71-6

[35]

Li C,Bi E.Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells.Science2023;379:690-4

[36]

Zhao C,Lyu Y.Design of bridge molecules for high-efficiency FAPbI3-based perovskite solar cells.ACS Energy Lett2024;9:1405-14

[37]

Li M,Chang J.Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells.Nat Commun2023;14:573 PMCID:PMC9895431

[38]

Zhao C,Almalki M.Stabilization of FAPbI3 with multifunctional alkali-functionalized polymer.Adv Mater2023;35:e2211619

[39]

Yang J,He Z.The poly(styrene-co-acrylonitrile) polymer assisted preparation of high-performance inverted perovskite solar cells with efficiency exceeding 22%.Nano Energy2021;82:105731

[40]

Li H,Liu Y.Covalently connecting crystal grains with polyvinylammonium carbochain backbone to suppress grain boundaries for long-term stable perovskite solar cells.ACS Appl Mater Interfaces2017;9:6064-71

[41]

Sun Y,Fang X.Long-term stability of organic-inorganic hybrid perovskite solar cells with high efficiency under high humidity conditions.J Mater Chem A2017;5:1374-9

[42]

Liu X,Li H.Biocompatible metal-free perovskite membranes for wearable X-ray detectors.ACS Appl Mater Interfaces2024;16:16300-8

[43]

Baker CO,Nelson W.Polyaniline nanofibers: broadening applications for conducting polymers.Chem Soc Rev2017;46:1510-25

[44]

Yang S,Yu Z.Tailoring passivation molecular structures for extremely small open-circuit voltage loss in perovskite solar cells.J Am Chem Soc2019;141:5781-7

[45]

Wei D,Wang R.Ion-Migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells.Adv Mater2018;30:e1707583

[46]

Liu F,Wong MK.Is excess PbI2 beneficial for perovskite solar cell performance?.Adv Energy Mater2016;6:1502206

[47]

Liu Y,Yang Z.20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors.Adv Opt Mater2016;4:1829-37

[48]

Wang T,Frost JM.Indirect to direct bandgap transition in methylammonium lead halide perovskite.Energy Environ Sci2017;10:509-15

[49]

Zhou L,Vogel DJ.Density of states broadening in CH3NH3PbI3 hybrid perovskites understood from ab initio molecular dynamics simulations.ACS Energy Lett2018;3:787-93

[50]

Frohna K,Harter J.Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals.Nat Commun2018;9:1829 PMCID:PMC5940805

[51]

Gao D,Chen X.Managing interfacial defects and carriers by synergistic modulation of functional groups and spatial conformation for high-performance perovskite photovoltaics based on vacuum flash method.Adv Mater2023;35:e2301028

[52]

Zheng L,Hou Y.A universal all-solid synthesis for high throughput production of halide perovskite.Nat Commun2022;13:7399 PMCID:PMC9715688

[53]

Zhao D,Qin R,Yu J.Efficient visible-near-infrared hybrid Perovskite:PbS quantum dot photodetectors fabricated using an antisolvent additive solution process.Adv Opt Mater2018;6:1800979

[54]

Li C,Zhao Y.Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system.Small2019;15:e1903599

[55]

Ahmad V,Greenberg M.Charge and exciton dynamics of OLEDs under high voltage nanosecond pulse: towards injection lasing.Nat Commun2020;11:4310 PMCID:PMC7453197

PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

/