Catalytic decomposition of methane: Ni-promoted perovskite oxide catalysts for turquoise hydrogen and carbon nanomaterials Co-production
Lan Zhang , Weike Zhang , Chee Kok Poh , Hongquan He , Qing Yue Kouk , Ovi Lian Ding , Lili Zhang , Siew Hwa Chan , Jiren Zeng , Guang Cao , Saifudin Abubakar
Energy Materials ›› 2025, Vol. 5 ›› Issue (3) : 500023
Catalytic decomposition of methane: Ni-promoted perovskite oxide catalysts for turquoise hydrogen and carbon nanomaterials Co-production
This study investigates the effectiveness of catalytic decomposition of methane for producing turquoise hydrogen and solid carbon nanomaterials. The focus is on developing cost-effective and high-performance Nickel (Ni)-promoted perovskite oxide catalysts. A series of transition metal, Ni-promoted (La0.75Ca0.25)(Cr0.5Mn0.5)O3-δ (LCCM) catalysts have been successfully prepared using water-based gel-casting technology. These catalysts are designed to decompose methane into turquoise hydrogen and carbon nanomaterials, achieving negligible CO2 emissions.
Methane decomposition / Ni-promoted perovskite oxide catalysts / turquoise hydrogen / carbon nanomaterials / metal exsolution
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
Gallego G, Barrault J, Batiot-dupeyrat C, Mondragón F. Production of hydrogen and MWCNTs by methane decomposition over catalysts originated from LaNiO3 perovskite.Catal Today2010;149:365-71 |
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
/
| 〈 |
|
〉 |