Multifunctional zinc silicate coating layer for high-performance aqueous zinc-ion batteries

Keliang Wang , Nina Baule , Hong Jin , Hui Qiao , Aaron Hardy , Thomas Schuelke , Qi Hua Fan

Energy Materials ›› 2025, Vol. 5 ›› Issue (1) : 500012

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (1) :500012 DOI: 10.20517/energymater.2024.51
Article

Multifunctional zinc silicate coating layer for high-performance aqueous zinc-ion batteries

Author information +
History +
PDF

Abstract

Dendrite growth during the continuous charge/discharge process is a serious problem that leads to internal short circuits in aqueous zinc-ion batteries. Herein, a multifunctional zinc silicate polymer lithium polysilicate (LSO) was proposed to address the issues. LSO can prevent direct contact between electrolytes and zinc anodes, thereby suppressing severe dendrite growth. Its mechanically stable structure can restrain the stress release to further stabilize the electrode. In addition, LSO is chemically bonded to zinc anodes to ensure superior overall stability compared to other surface coatings. Moreover, LSO anodes exhibit outstanding electrolyte wettability and corrosion resistance, with strong adhesion properties. In-situ optical microscopy observation demonstrates its stability during charge/discharge process. Symmetrical cells using the Zn-LSO anode exhibited long cycling life of 833, 455, 344, and 260 h with low overpotentials of 66, 80, 118, and 141 mV at current densities of 0.5, 1, 3 and 5 mA cm-2, respectively. Full cells coupled with a MnO2 cathode showed a high-capacity reversibility of up to 234 mAh g-1 and outstanding rate performance at different current densities. This study demonstrates that LSO coating is a promising method for enhancing the electrochemical performance of zinc-ion batteries.

Keywords

Dendrite-free / zinc-ion battery / zinc silicate polymer / multifunctional / high-performance

Cite this article

Download citation ▾
Keliang Wang, Nina Baule, Hong Jin, Hui Qiao, Aaron Hardy, Thomas Schuelke, Qi Hua Fan. Multifunctional zinc silicate coating layer for high-performance aqueous zinc-ion batteries. Energy Materials, 2025, 5(1): 500012 DOI:10.20517/energymater.2024.51

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang Z,Zhang W.Protecting the Li-metal Anode in a Li-O2 battery by using boric acid as an SEI-forming additive.Adv Mater2018;30:e1803270

[2]

Chen L,Ji X,Hou S.High-energy Li metal battery with lithiated host.Joule2019;3:732-44

[3]

Adil M,Roy A,Nagendra A.Practical aqueous calcium-ion battery full-cells for future stationary storage.ACS Appl Mater Inter2020;12:11489-503

[4]

Janoschka T,Hager MD.An aqueous redox-flow battery with high capacity and power: the TEMPTMA/MV system.Angew Chem Int Ed Engl2016;55:14427-30

[5]

Pasta M,Huggins RA.A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage.Nat Commun2012;3:1149

[6]

Gheytani S,Wu F.An aqueous Ca-ion battery.Adv Sci2017;4:1700465

[7]

Zeng X,Wang Z,Guo Z.Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes.Energy Storage Mater2019;20:410-37

[8]

Verma V,Manalastas W,Srinivasan M.Progress in rechargeable aqueous zinc-and aluminum-ion battery electrodes: challenges and outlook.Adv Sustain Syst2019;3:1800111

[9]

Jia H,Tawiah B.Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020;70:104523

[10]

He P,Zhang G.Layered VS2 nanosheet-based aqueous Zn ion battery cathode.Adv Energy Mater2017;7:1601920

[11]

He B,Zhang Q.Conversion synthesis of self-standing potassium zinc hexacyanoferrate arrays as cathodes for high-voltage flexible aqueous rechargeable sodium-ion batteries.Small2019;15:e1905115

[12]

Zhang N,Jia M.Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life.ACS Energy Lett2018;3:1366-72

[13]

Chen S,Humphreys J.Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery.Energy Storage Mater2020;28:205-15

[14]

Cao Z,Zhang X,Shen J.Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries.Adv Energy Mater2020;10:2001599

[15]

Zhang Q,Tang Y,Wang H.Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries.Angew Chem Int Ed2020;59:13180-91

[16]

Hong Z,Viswanathan V.Design principles for dendrite suppression with porous polymer/aqueous solution hybrid electrolyte for Zn metal anodes.ACS Energy Lett2020;5:2466-74

[17]

Lee J,Kim S.Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries.Energy Environ Sci2020;13:2839-48

[18]

Zeng Y,Qin R.Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries.Adv Mater2019;31:e1903675

[19]

An G,Pak S.2D metal Zn nanostructure electrodes for high-performance Zn ion supercapacitorss.Adv Energy Mater2020;10:1902981

[20]

Liu X,Yang A.High ionic conductive protection layer on Zn metal anode for enhanced aqueous zinc-ion batteries.Chinese Chem Lett2023;34:107703

[21]

Li J,Duan F.Pure amorphous and ultrathin phosphate layer with superior ionic conduction for zinc anode protection.ACS Nano2023;17:20062-72

[22]

Liang P,Liu X.Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries.Adv Funct Mater2020;30:1908528

[23]

Zhao K,Yu Y.Ultrathin surface coating enables stabilized zinc metal anode.Adv Mater Inter2018;5:1800848

[24]

Deng C,Han J.A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode.Adv Funct Mater2020;30:2000599

[25]

Kang L,Jiang F.Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries.Adv Energy Mater2018;8:1801090

[26]

Zhao Z,Hu Z.Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase.Energy Environ Sci2019;12:1938-49

[27]

Xu W,Huo W.Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries.Nano Energy2019;62:275-81

[28]

Wang F,Gao T.Highly reversible zinc metal anode for aqueous batteries.Nat Mater2018;17:543-9

[29]

Zhang Q,Fu L.The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive.Angew Chem Int Ed Engl2019;58:15841-7

[30]

Li W,Zhou M,Cheng S.Advanced low-cost, high-voltage, long-life aqueous hybrid sodium/zinc batteries enabled by a dendrite-free zinc anode and concentrated electrolyte.ACS Appl Mater Inter2018;10:22059-66

[31]

Han J,Lee H.In-situ coating of metal fluoride/polymer bi-layer protection for dendrite-free, anti-corrosive Zn-metal anode.Chem Eng J2024;485:149881

[32]

Guo X,Li J.Alleviation of dendrite formation on zinc anodes via electrolyte additives.ACS Energy Lett2021;6:395-403

[33]

Yin Y,Zhang Q.Endrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery.Adv Mater2020;32:e1906803

[34]

Tian Y,Wei C.Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries.ACS Nano2019;13:11676-85

[35]

Ci J,Kuga S,Wu M.Improved performance of microbial fuel cell using esterified corncob cellulose nanofibers to fabricate air-cathode gas diffusion layer.ACS Sustainable Chem Eng2017;5:9614-8

[36]

Hao J,Zhang S.Designing dendrite-free zinc anodes for advanced aqueous zinc batteries.Adv Funct Mater2020;30:2001263

[37]

Guo W,Guo Z.Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries.Energy Storage Mater2020;30:104-12

[38]

Dong G,Gong L.Mesoporous zinc silicate composites derived from iron ore tailings for highly efficient dye removal: structure and morphology evolution.Micropor Mesopor Mater2020;305:110352

[39]

Zhang Y,Chen L,Ye G.Influence of magnesia on demoulding strength of colloidal silica-bonded castables.Rev Adv Mater Sci2019;58:32-7

[40]

Huang J,Liu K,He Z.Interfacial chemical binding and improved kinetics assisting stable aqueous Zn-MnO2 batteries.Mater Today Energy2020;17:100475

[41]

Wang SB,Yao RQ.Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries.Nat Commun2020;11:1634

[42]

Ming J,Xia C,Alshareef HN.Zinc-ion batteries: materials, mechanisms, and applications.Mater Sci Eng R Rep2019;135:58-84

[43]

Liu M,Liu H.Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery.Nano Energy2019;64:103942

[44]

Zhao Q,Wang Z.Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery.Small2019;15:e1904545

[45]

Liao Y,Yang C.Unveiling performance evolution mechanisms of MnO2 polymorphs for durable aqueous zinc-ion batteries.Energy Storage Mater2022;44:508-16

PDF

178

Accesses

0

Citation

Detail

Sections
Recommended

/