Combining ternary, ionic liquid-based, polymer electrolytes with a single-ion conducting polymer-based interlayer for lithium metal batteries

Jiajia Wan , Mintao Wan , Xu Hou , Francesco Briatico Vangosa , Dominic Bresser , Jie Li , Elie Paillard

Energy Materials ›› 2024, Vol. 4 ›› Issue (6) : 400074

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (6) :400074 DOI: 10.20517/energymater.2024.50
Article

Combining ternary, ionic liquid-based, polymer electrolytes with a single-ion conducting polymer-based interlayer for lithium metal batteries

Author information +
History +
PDF

Abstract

Among the many approaches to improve the performance of lithium-metal batteries, ternary polyethylene oxide/ionic liquid/lithium salt electrolytes offer several advantages such as low flammability, high conductivity (vs. polyethylene oxide/lithium salt electrolytes) and, to a large extent, limiting the growth of dendrites at moderate currents. However, they suffer from relatively low mechanical strength for lithium metal confinement. Besides, the lithium transport numbers are very low, which is conducive to lithium depletion during plating at high current densities at the lithium/electrolyte interface. Thus, we show here that the combination of a ternary solid polymer electrolyte with a single-ion polymer-based conducting interlayer allows for a significant improvement of the cyclability of the lithium metal anode. This results in a strong improvement of the electrochemical performance of lithium-metal batteries using solid polymer electrolytes at 80 °C, with an 85% capacity retention after 350 cycles (vs. 60% after 62 cycles for the uncoated anode). This is attributed, via focused ion beam-scanning electron microscopy and X-ray photoelectron spectroscopy, to a denser lithium deposit, better contact with the electrolyte and a reduced reactivity of electrolyte species with the interlayer.

Keywords

Lithium metal battery / artificial SEI / ternary solid polymer electrolyte

Cite this article

Download citation ▾
Jiajia Wan, Mintao Wan, Xu Hou, Francesco Briatico Vangosa, Dominic Bresser, Jie Li, Elie Paillard. Combining ternary, ionic liquid-based, polymer electrolytes with a single-ion conducting polymer-based interlayer for lithium metal batteries. Energy Materials, 2024, 4(6): 400074 DOI:10.20517/energymater.2024.50

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng XB,Zhao CZ.Toward safe lithium metal anode in rechargeable batteries: a review.Chem Rev2017;117:10403-73

[2]

He X,Passerini S.The passivity of lithium electrodes in liquid electrolytes for secondary batteries.Nat Rev Mater2021;6:1036-52

[3]

Zeng X,Abd El-hady D.Commercialization of lithium battery technologies for electric vehicles.Adv Energy Mater2019;9:1900161

[4]

Iojoiu C.Solid-state batteries with polymer electrolytes. In: Bard AJ, editor. Encyclopedia of electrochemistry. Wiley; 2007. pp. 1-49.

[5]

Dorval V,Vallee A. Lithium-metal-polymer batteries: from the electrochemical cell to the integrated energy storage system. Available from: https://www.vertiv.com/48e1ad/globalassets/documents/battcon-static-assets/2004/lithium-metal-polymer-batteries--from-the-electrochemical-cell-to-the-integrated-energy-storage-system.pdf [Last accessed on 26 Jul 2024]

[6]

Shin J.Ionic liquids to the rescue?.Electrochem Commun2003;5:1016-20

[7]

Hoffknecht J,Atik J.Coordinating anions “to the rescue” of the lithium ion mobility in ternary solid polymer electrolytes plasticized with ionic liquids.Adv Energy Mater2023;13:2202789

[8]

Shin J,Passerini S.An elegant fix for polymer electrolytes.Electrochem Solid State Lett2005;8:A125

[9]

Shin J,Passerini S.PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries.J Electrochem Soc2005;152:A978

[10]

Tsao C,Trevisanello E.Polyethylene glycol dimethyl ether-plasticized poly(vinylidene difluoride)-based polymer electrolytes inhibit dendrite growth and enable stable cycling for lithium-metal batteries.ACS Appl Energy Mater2023;6:5662-70

[11]

Atik J,Thienenkamp JH,Winter M.Cation-assisted lithium-ion transport for high-performance PEO-based ternary solid polymer electrolytes.Angew Chem Int Ed2021;60:11919-27 PMCID:PMC8252488

[12]

Herbers L,Winter M.An ionic liquid- and PEO-based ternary polymer electrolyte for lithium metal batteries: an advanced processing solvent-free approach for solid electrolyte processing.RSC Adv2023;13:17947-58 PMCID:PMC10265719

[13]

Rupp B,Balducci A,Kern W.Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid.Eur Polym J2008;44:2986-90

[14]

Kim G,Carewska M.UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids.J Power Sources2010;195:6130-7

[15]

Balducci A,Kim G.Development of safe, green and high performance ionic liquids-based batteries (ILLIBATT project).J Power Sources2011;196:9719-30

[16]

Wetjen M,Joost M,Winter M.Thermal and electrochemical properties of PEO-LiTFSI-Pyr14TFSI-based composite cathodes, incorporating 4 V-class cathode active materials.J Power Sources2014;246:846-57

[17]

Wang G,Xie D.A scalable approach for dendrite-free alkali metal anodes via room-temperature facile surface fluorination.ACS Appl Mater Interfaces2019;11:4962-8

[18]

Li NW,Yang CP.An artificial solid electrolyte interphase layer for stable lithium metal anodes.Adv Mater2016;28:1853-8

[19]

Kazyak E,Dasgupta NP.Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments.Chem Mater2015;27:6457-62

[20]

Liu Y,Yuen PY.An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes.Adv Mater2017;29:1605531

[21]

Wang L,Wang Q.Long lifespan lithium metal anodes enabled by Al2O3 sputter coating.Energy Stor Mater2018;10:16-23

[22]

Beichel W,Klose P.An artificial SEI layer based on an inorganic coordination polymer with self-healing ability for long-lived rechargeable lithium-metal batteries.Batteries Supercaps2022;5:e202100347

[23]

Park K.Dendrite-suppressed lithium plating from a liquid electrolyte via wetting of Li3N.Adv Energy Mater2017;7:1700732

[24]

Sun S,Kim G.Facile ex situ formation of a LiF-polymer composite layer as an artificial SEI layer on Li metal by simple roll-press processing for carbonate electrolyte-based Li metal batteries.J Mater Chem A2020;8:17229-37

[25]

Liu Y,Zhang D.Constructing Li-rich artificial sei layer in alloy-polymer composite electrolyte to achieve high ionic conductivity for all-solid-state lithium metal batteries.Adv Mater2021;33:e2004711

[26]

Zhao B,Shi Y.Construction of high elastic artificial SEI for air-stable and long-life lithium metal anode.J Colloid Interf Sci2023;642:193-203

[27]

Sun J,Li J.Robust transport: an artificial solid electrolyte interphase design for anode-free lithium-metal batteries.Adv Mater2023;35:e2209404

[28]

Zhao F,Wei Y.Constructing artificial SEI layer on lithiophilic MXene surface for high-performance lithium metal anodes.Adv Sci2022;9:e2103930 PMCID:PMC8867166

[29]

Cui X,Wang X,Li Y.Stabilizing lithium metal anodes by a self-healable and Li-regulating interlayer.ACS Appl Mater Interfaces2021;13:44983-90

[30]

Chazalviel J.Electrochemical aspects of the generation of ramified metallic electrodeposits.Phys Rev A1990;42:7355-67

[31]

Wan J,Diemant T,Passerini S.Single-ion conducting interlayers for improved lithium metal plating.Energy Stor Mater2023;63:103029

[32]

Becking J,Kolek M.Lithium-metal foil surface modification: an effective method to improve the cycling performance of lithium-metal batteries.Adv Mater Inter2017;4:1700166

[33]

Deng K,Ren S,Xiao M.Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes.J Mater Chem A2019;7:13113-9

[34]

Budi A,Opletal G.Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide.J Phys Chem C2012;116:19789-97

[35]

Appetecchi G,Montanino M,Passerini S.Room temperature lithium polymer batteries based on ionic liquids.J Power Sources2011;196:6703-9

[36]

Joost M,Jeong S,Winter M.Ionic mobility in ternary polymer electrolytes for lithium-ion batteries.Electrochim Acta2012;86:330-8

[37]

Diddens D.Simulation study of the lithium ion transport mechanism in ternary polymer electrolytes: the critical role of the segmental mobility.J Phys Chem B2014;118:1113-25

[38]

Wetjen M,Joost M,Passerini S.Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide-N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries.Electrochim Acta2013;87:779-87

[39]

Grande L,Kim GT,Passerini S.Ionic liquid electrolytes for Li-air batteries: lithium metal cycling.Int J Mol Sci2014;15:8122-37 PMCID:PMC4057723

[40]

Elie Paillard. Li-air battery with ionic liquid electrolyte flow: main achievements of the LABOHR EU project. Proceedings of the 65th Annual Meeting of the International Society of Electrochemistry; 2014 Aug 31-Sep5; Lausanne, Switzerland.

[41]

Grande L,Koch SL,Paillard E.Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.ACS Appl Mater Interfaces2015;7:5950-8

[42]

Chen X,Fang D.A review on C1s XPS-spectra for some kinds of carbon materials.Fuller Nanotub Car N2020;28:1048-58

[43]

Dedryvère R,Martinez H,Lemordant D.XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries.J Phys Chem B2006;110:12986-92

[44]

Wood KN.XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction.ACS Appl Energy Mater2018;1:4493-504

[45]

Xiong S,Diao Y.Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries.J Power Sources2014;246:840-5

[46]

Otto S,Krauskopf T.In-depth characterization of lithium-metal surfaces with XPS and ToF-SIMS: toward better understanding of the passivation layer.Chem Mater2021;33:859-67

[47]

Yu W,Cui Y.Degradation and speciation of Li salts during XPS analysis for battery research.ACS Energy Lett2022;7:3270-5

PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

/