One-step hydrothermal synthesis of Fe single atom doped 1T-MoS2 nanosheets for high-performance seawater hydrogen production

Xun Geng , Yitong Cao , Zhixuan Li , Mengyao Li , Chaojie Cao , Chenxi Yu , Xueze Chu , Long Hu , Yunlong Sun , Liang Qiao , Xiaojiang Yu , Mark B. H. Breese , Jang Mee Lee , Danyang Wang , Dewei Chu , Jiabao Yi

Energy Materials ›› 2025, Vol. 5 ›› Issue (1) : 500009

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (1) :500009 DOI: 10.20517/energymater.2024.46
Article

One-step hydrothermal synthesis of Fe single atom doped 1T-MoS2 nanosheets for high-performance seawater hydrogen production

Author information +
History +
PDF

Abstract

In the pursuit of sustainable and clean energy sources, the development of efficient electrocatalysts for hydrogen evolution reaction has gained significant attention. In this work, we synthesized single-atom Fe-doped 1T MoS2 (sFe-1T/MoS2) nanosheets using a one-step hydrothermal method, harnessing the synergistic effects of iron-intercalation to enhance hydrogen production through an abundance of active sites. Notably, 10 at.% sFe-1T/MoS2 exhibited excellent hydrogen evolution reaction performance with a low onset potential of 190 mV and a Tafel slope of 55 mV/dec in acidic solution. High performance was also achieved in alkaline solutions. Additionally, these catalysts demonstrated excellent efficiency in seawater splitting. This work not only offers a cost-effective and scalable method for producing high-quality electrocatalysts but also sets a precedent for the application of this technology across various catalytic systems, marking a significant advancement in clean energy research.

Keywords

MoS2 / hydrogen production / single-atoms / seawater splitting

Cite this article

Download citation ▾
Xun Geng, Yitong Cao, Zhixuan Li, Mengyao Li, Chaojie Cao, Chenxi Yu, Xueze Chu, Long Hu, Yunlong Sun, Liang Qiao, Xiaojiang Yu, Mark B. H. Breese, Jang Mee Lee, Danyang Wang, Dewei Chu, Jiabao Yi. One-step hydrothermal synthesis of Fe single atom doped 1T-MoS2 nanosheets for high-performance seawater hydrogen production. Energy Materials, 2025, 5(1): 500009 DOI:10.20517/energymater.2024.46

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu Z,Davis SJ,Ciais P.Monitoring global carbon emissions in 2021.Nat Rev Earth Environ2022;3:217-9 PMCID:PMC8935618

[2]

Fan P,Pan J.Recent advances in photothermal effects for hydrogen evolution.Chinese Chem Lett2024;35:108513

[3]

Chu X,Yang JH.Strategies for Improving the photocatalytic hydrogen evolution reaction of carbon nitride-based catalysts.Small2023;19:e2302875

[4]

Yadav AA,Dhodamani AG.Hydrothermally synthesized Ag@MoS2 composite for enhanced photocatalytic hydrogen production.Catalysts2023;13:716

[5]

Yadav A,Kang S.Porous nanoplate-like tungsten trioxide/reduced graphene oxide catalyst for sonocatalytic degradation and photocatalytic hydrogen production.Surf Inter2021;24:101075

[6]

Cui C,Lin D.Recent progress in carbon-based materials as catalysts for electrochemical and photocatalytic water splitting. In: Paul R, Etacheri V, Wang Y, Lin CT , Editors. Carbon based nanomaterials for advanced thermal and electrochemical energy storage and conversion. Elsevier; 2019.p.173-200.

[7]

Li M,Tian R.Vanadium doped 1T MoS2 nanosheets for highly efficient electrocatalytic hydrogen evolution in both acidic and alkaline solutions.Chem Eng J2021;409:128158

[8]

Wang D,Bao S,Fei H.Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution.J Mater Chem A2017;5:2681-8

[9]

Li M,Chu X,Yi J.MoS2 nanoflower incorporated with Au/Pt nanoparticles for highly efficient hydrogen evolution reaction.Emergent Mater2021;4:579-87

[10]

Jaramillo TF,Bonde J,Horch S.Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts.Science2007;317:100-2

[11]

Lin YC,Huang YS.Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2.Nat Nanotechnol2014;9:391-6

[12]

Tang Q.Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles.ACS Catal2016;6:4953-61

[13]

Li W,Li J.Hydrogen evolution reaction mechanism on 2H-MoS2 electrocatalyst.Appl Surf Sci2019;498:143869

[14]

Tang J,Ding D,Deng X.Research progress of 1T-MoS2 in electrocatalytic hydrogen evolution.Int J Hydrogen Energ2022;47:39771-95

[15]

Li M,Hu L.Hydrazine hydrate intercalated 1T-dominant MoS2 with superior ambient stability for highly efficient electrocatalytic applications.ACS Appl Mater Inter2022;14:16338-47

[16]

Lei Z,Liu Y.Single metal atoms catalysts-promising candidates for next generation energy storage and conversion devices.EcoMat2022;4:e12186

[17]

Levy RB.Platinum-like behavior of tungsten carbide in surface catalysis.Science1973;181:547-9

[18]

Li M,Wang S.Thermostable 1T-MoS2 nanosheets achieved by spontaneous intercalation of Cu single atoms at room temperature and their enhanced HER performance.Small Struct2023;4:2300010

[19]

Zhao X,Lu Q.FeS2-doped MoS2 nanoflower with the dominant 1T-MoS2 phase as an excellent electrocatalyst for high-performance hydrogen evolution.Electrochim Acta2017;249:72-8

[20]

Huang W,Qi G.Fe-doped MoS2nanosheets array for high-current-density seawater electrolysis.Nanotechnology2021;32:415403

[21]

Acerce M,Chhowalla M.Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials.Nat Nanotechnol2015;10:313-8

[22]

Liu L,Wu L.Phase-selective synthesis of 1T' MoS2 monolayers and heterophase bilayers.Nat Mater2018;17:1108-14

[23]

Geng X,Wu W.Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction.Nat Commun2016;7:10672 PMCID:PMC4749985

[24]

Nayak AP,Voiry D.Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide.Nano Lett2015;15:346-53

[25]

Park MJ,Kim JH.Metal-insulator crossover in multilayered MoS2.Nanoscale2015;7:15127-33

[26]

Nam GH,Wang X.In-plane anisotropic properties of 1T'-MoS2 layers.Adv Mater2019;31:e1807764

[27]

Groot FD.Multiplet effects in X-ray spectroscopy.Coordin Chem Rev2005;249:31-63

[28]

Mohamed AY,Cho DY.Chemical structure and magnetism of FeOx/Fe2O3 interface studied by X-ray absorption spectroscopy.Magnetochemistry2020;6:33.

[29]

Hocking RK,Raymond KN,Hedman B.Fe L-edge X-ray absorption spectroscopy determination of differential orbital covalency of siderophore model compounds: electronic structure contributions to high stability constants.J Am Chem Soc2010;132:4006-15 PMCID:PMC2890247

[30]

Hocking RK,Yan YL.Fe L-edge X-ray absorption spectroscopy of low-spin heme relative to non-heme Fe complexes: delocalization of Fe d-electrons into the porphyrin ligand.J Am Chem Soc2007;129:113-25

[31]

Baker ML,Yan JJ,Hedman B.K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of Differential orbital covalency (DOC) of transition metal sites.Coord Chem Rev2017;345:182-208 PMCID:PMC5621773

[32]

Westre TE,Dewitt JG,Hodgson KO.A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes.J Am Chem Soc1997;119:6297-314

[33]

Kitajou A,Hara S.Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries.J Power Sources2014;247:391-5

[34]

Mo J,Lau T.Transition metal atom-doped monolayer MoS2 in a proton-exchange membrane electrolyzer.Mater Today Adv2020;6:100020

[35]

Pattengale B,Yan X.Dynamic evolution and reversibility of single-atom Ni(II) active site in 1T-MoS2 electrocatalysts for hydrogen evolution.Nat Commun2020;11:4114 PMCID:PMC7431582

[36]

Zheng J,Lu L.Structural insight into [Fe-S2-Mo] motif in electrochemical reduction of N2 over Fe1-supported molecular MoS2.Chem Sci2020;12:688-95

[37]

Ye J,Wang Q.Nitrogen doped FeS2 nanoparticles for efficient and stable hydrogen evolution reaction.J Energy Chem2021;56:283-9

[38]

Solati N,Kaya S.Advancing the understanding of the structure-activity-durability relation of 2D MoS2 for the hydrogen evolution reaction.ACS Catal2023;13:342-54

[39]

Singh AK,Azad UP.Vanadium doped few-layer ultrathin MoS2 nanosheets on reduced graphene oxide for high-performance hydrogen evolution reaction.RSC Adv2019;9:22232-9

[40]

Shi Y,Yang DR.Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction.J Am Chem Soc2017;139:15479-85

[41]

Hu J,Zhang S.One-pot Fabrication of 2D/2D CdIn2S4/In2S3 heterojunction for boosting photocatalytic Cr(VI) reduction.Catalysts2023;13:826

[42]

Geng X,Sathish C.Biomass derived nanoarchitectonics of porous carbon with tunable oxygen functionalities and hierarchical structures and their superior performance in CO2 adsorption and energy storage.Carbon2023;214:118347

[43]

Ying T,Qi Y,Hosono H.High entropy van der waals materials.Adv Sci2022;9:e2203219 PMCID:PMC9596826

[44]

Kozdra S,Das T.From DFT investigations of oxygen-implanted molybdenum disulfide to temperature-induced stabilization of MoS2/MoO3 heterostructure.Appl Sur Sci2023;631:157547

[45]

Zander J,Weiss M.Light-induced ammonia generation over defective carbon nitride modified with pyrite.Adv Energy Mater2022;12:2202403

[46]

Wolski SC,Hänzelmann P.Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD.PLoS Biol2008;6:e149

[47]

Mahmood N,Zhang JW,Zhang X.Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions.Adv Sci2018;5:1700464

PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

/