Flexible, highly conductive, and microscopically disordered MXene film electrode constructed via in-situ carbon dots intercalation toward high-performance supercapacitors

Deyu Yang , Haonan Cui , Razium Ali Soomro , Peng Zhang , Bin Xu

Energy Materials ›› 2025, Vol. 5 ›› Issue (1) : 500006

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (1) :500006 DOI: 10.20517/energymater.2024.45
Article

Flexible, highly conductive, and microscopically disordered MXene film electrode constructed via in-situ carbon dots intercalation toward high-performance supercapacitors

Author information +
History +
PDF

Abstract

Two-dimensional MXenes are being recognized as favorable supercapacitor electrode materials due to their metallic conductivity, excellent hydrophilicity, high density, and rich surface chemistry. However, layer-restacking within MXene electrodes substantially hinders the efficient utilization of the active surface and ion accessibility. Herein, a unique carbon dots (CDs) intercalated MXene film (CDs-MF) is designed by introducing gelatin within the MXene interlayers followed by carbonization. The CD intercalation can enlarge the interlayer spacing of MXene film and induce microscopic disorder, exposing the active surface and facilitating ion diffusion within the electrode. The optimal CDs-MF electrode shows exceptional capacitive performance, achieving high gravimetric/volumetric capacitances (396.4 F g-1 at 1 A g-1 and 1,153.2 F cm-3 at 1 A cm-3), superior rate capability (123.2 F g-1 at 1,000 A g-1), and excellent cycling stability with no capacitance decay over 100,000 cycles. Moreover, the assembled quasi-solid-state symmetric supercapacitor exhibited a maximum energy density of 21.2 Wh L-1 and a power density of 12 kW L-1. The device could operate efficiently under various configurations (series or parallel) and different bending angles, reflecting its promising application in flexible energy storage devices.

Keywords

Supercapacitors / carbon dots intercalation / MXene / flexible film / electrochemical performance

Cite this article

Download citation ▾
Deyu Yang, Haonan Cui, Razium Ali Soomro, Peng Zhang, Bin Xu. Flexible, highly conductive, and microscopically disordered MXene film electrode constructed via in-situ carbon dots intercalation toward high-performance supercapacitors. Energy Materials, 2025, 5(1): 500006 DOI:10.20517/energymater.2024.45

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Simon P.Perspectives for electrochemical capacitors and related devices.Nat Mater2020;19:1151-63.

[2]

Wang Y,Xia Y.Electrochemical capacitors: mechanism, materials, systems, characterization and applications.Chem Soc Rev2016;45:5925-50

[3]

Simon P,Dunn B.Where do batteries end and supercapacitors begin? Electrochemical measurements can distinguish between different types of energy storage materials and their underlying mechanisms.Science2014;343:1210-1

[4]

Yin J,Alhebshi NA,Alshareef HN.Synthesis strategies of porous carbon for supercapacitor applications.Small Method2020;4:1900853

[5]

Li T,Lin J.The synthesis and performance analysis of various biomass-based carbon materials for electric double-layer capacitors: a review.Int J Energy Res2020;44:2426-54

[6]

Xiao X,Lin S.Scalable salt-templated synthesis of two-dimensional transition metal oxides.Nat Commun2016;7:11296 PMCID:PMC4844692

[7]

Wang T,Yu F,Wang H.Boosting the cycling stability of transition metal compounds-based supercapacitors.Energy Storage Mater2019;16:545-73

[8]

Naskar P,Chakraborty P,Biswas B.Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers.J Mater Chem A2021;9:1970-2017

[9]

Vahidmohammadi A,Gogotsi Y.The world of two-dimensional carbides and nitrides (MXenes).Science2021;372:eabf1581

[10]

Zhou S,Li Y.Ultrastable organic anode enabled by electrochemically active MXene binder toward advanced potassium ion storage.ACS Nano2024;18:16027-40

[11]

Naguib M,Gogotsi Y.Ten years of progress in the synthesis and development of MXenes.Adv Mater2021;33:2103393

[12]

Soomro RA,Fan B,Xu B.Progression in the oxidation stability of MXenes.Nano-Micro Lett2023;15:108 PMCID:PMC10113412

[13]

Zhang J,Uzun S.Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity.Adv Mater2020;32:2001093

[14]

Zhu Q,Simon P.Two-dimensional MXenes for electrochemical capacitor applications: progress, challenges and perspectives.Energy Storage Mater2021;35:630-60

[15]

Xu X,Lanza M.Status and prospects of MXene-based nanoelectronic devices.Matter2023;6:800-37

[16]

Zhu Y,Ma J,Zheng S.Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries.Energy Storage Mater2022;51:500-26

[17]

Zhao MQ,Ren CE.Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage.Adv Mater2017;29:1702410

[18]

Li K,Wang H.3D MXene architectures for efficient energy storage and conversion.Adv Funct Mater2020;30:2000842

[19]

Xia Y,Zhao MQ.Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes.Nature2018;557:409-12

[20]

Zhang P,Soomro RA.In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors.Adv Funct Mater2020;30:2000922

[21]

Lv K,Zhao X,Tao J.Understanding the effect of pore size on electrochemical capacitive performance of MXene foams.Small2022;18:2202203

[22]

Shang T,Qi C.3D macroscopic architectures from self-assembled MXene hydrogels.Adv Funct Mater2019;29:1903960

[23]

Yang C,Xia H.3D printed template-assisted assembly of additive-free Ti3C2Tx MXene microlattices with customized structures toward high areal capacitance.ACS Nano2022;16:2699-710

[24]

Lukatskaya MR,Lin Z.Ultra-high-rate pseudocapacitive energy storage in Two-dimensional transition metal carbides.Nat Energy2017;2:17105

[25]

Wu Q,Li P,Wu F.High specific capacitance and long cycle stability of few-layered hexagonal Ti3C2 free-standing film constructed with spiral chiral Hexagon Ti3AlC2.Appl Surf Sci2023;609:155329

[26]

Zhou Y,Anasori B.Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors.ACS Nano2020;14:3576-86

[27]

Chen H,Lin Z.Carbon nanotubes enhance flexible MXene films for high-rate supercapacitors.J Mater Sci2020;55:1148-56

[28]

Chen W,Yang K,Yang P.MXene (Ti3C2Tx)/cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors.Chem Eng J2021;413:127524

[29]

Zhao Y,Yu DYW.Tuning Electrolyte solvation structure and CEI film to enable long lasting FSI--based dual-ion battery.Adv Funct Mater2023;33:2300305

[30]

Tai Z,Liu Y,Dou S.Activated carbon from the graphite with increased rate capability for the potassium ion battery.Carbon2017;123:54-61

[31]

Sarycheva A.Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene.Chem Mater2020;32:3480-8

[32]

Wei Y,Zhang P,Xu B.Bi2S3 nanorods encapsulated in iodine-doped graphene frameworks with enhanced potassium storage properties.Chin Chem Lett2022;33:3212-6

[33]

Zhang P,Yang D,Xu B.Flexible carbon dots-intercalated MXene film electrode with outstanding volumetric performance for supercapacitors.Adv Funct Mater2023;33:2209918

[34]

Wang M,Zhang H.Nature-inspired interconnected Macro/Meso/Micro-porous MXene electrode.Adv Funct Mater2023;33:2211199

[35]

Halim J,Naguib M.X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes).Appl Surf Sci2016;362:406-17

[36]

Bashir T,Wang J,Zhao J.MXene terminating groups =O, -F or -OH, -F or =O, -OH, -F, or =O, -OH, -Cl?.J Energy Chem2023;76:90-104

[37]

Liu Y,Zhang W.MXene-based quantum dots optimize hydrogen production via spontaneous evolution of Cl- to O-terminated surface groups.Energy Environ Mater2023;6:12438

[38]

Boidi G,Broens MI.Influence of ex-situ annealing on the friction and wear performance of multi-layer Ti3C2Tx coatings.Appl Mater Today2024;36:102020

[39]

Wang G,Jin S,Jing L.Gelatin-derived honeycomb like porous carbon for high mass loading supercapacitors.J Energy Storage2022;45:103525

[40]

Mičušík M,Stepura A.Aging of 2D MXene nanoparticles in air: an XPS and TEM study.Appl Surf Sci2023;610:155351

[41]

Zhou T,Wang Y.Super-tough MXene-functionalized graphene sheets.Nat Commun2020;11:2077 PMCID:PMC7190721

[42]

Deng Z,Wang Z,Yu ZZ.Scalable production of catecholamine-densified MXene coatings for electromagnetic shielding and infrared stealth.Small2023;19:2304278

[43]

Wan S,Wang Y.Strong sequentially bridged MXene sheets.Proc Natl Acad Sci USA2020;117:27154-61 PMCID:PMC7959518

[44]

Usman KAS,Hegh DY.Sequentially bridged Ti3C2Tx MXene sheets for high performance applications.Adv Mater Inter2021;8:2002043

[45]

Zhan C,Lukatskaya M,Gogotsi Y.Understanding the MXene pseudocapacitance.J Phys Chem Lett2018;9:1223-8

[46]

Zhang X,Dong S,Liu X.Surface modified MXene film as flexible electrode with ultrahigh volumetric capacitance.Electrochim Acta2019;294:233-9

[47]

Wu Z,Shang T.Reassembly of MXene hydrogels into flexible films towards compact and ultrafast supercapacitors.Adv Funct Mater2021;31:2102874

[48]

Wang J,Yang B,Qin J.Mechanochemistry-induced biaxial compressive strain engineering in MXenes for boosting lithium storage kinetics.Nano Energy2021;87:106053

[49]

Tang J,Zhong X.Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor.Adv Energy Mater2021;27:2003025

[50]

Zhang P,Guan Z,Xu B.3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage.Energy Storage Mater2020;29:163-71

[51]

Hwang SK,Chodankar NR,Han YK.An aqueous high-performance hybrid supercapacitor with MXene and polyoxometalates electrodes.Chem Eng J2022;427:131854

PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

/