The recent progress of single-atom catalysts on amorphous substrates for electrocatalysis

Cheng’ao Liu , Yanping Cui , Yao Zhou

Energy Materials ›› 2025, Vol. 5 ›› Issue (1) : 500001

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (1) :500001 DOI: 10.20517/energymater.2024.41
Mini Review

The recent progress of single-atom catalysts on amorphous substrates for electrocatalysis

Author information +
History +
PDF

Abstract

Single-atom catalysts (SACs) have emerged as a focal point in energy catalytic conversion due to their remarkable atomic efficiency and catalytic performance. The challenge lies in efficiently anchoring active sites on a specific substrate to prevent agglomeration, maximizing their effectiveness. Substrate characteristics play a pivotal role in shaping the catalytic performance of SACs, influencing the dispersion and stability of single atoms. In recent years, amorphous materials have gained attention as substrates due to their unique surface structure and abundance of unsaturated coordination sites, offering an ideal platform for capturing and anchoring single atoms effectively, thus enhancing catalytic activity. To clarify the interaction between single atoms and amorphous substrates, this review outlines amorphization methods, the mechanism of single-atom anchoring and the characterization methods of amorphous SACs. Subsequently, it summarizes the physical properties and electrocatalytic mechanisms of amorphous materials. Then, interactions between single atoms and amorphous substrates are categorized and summarized. Finally, the paper consolidates the research progress of amorphous SACs and outlines future development prospects. By exploring the synergistic relationship between single atoms and amorphous substrates, this review aims to deepen the understanding of their interaction mechanisms, thereby propelling advancements in SACs for energy catalytic conversion.

Keywords

Single atoms / amorphous substrates / interactions / electrocatalysis

Cite this article

Download citation ▾
Cheng’ao Liu, Yanping Cui, Yao Zhou. The recent progress of single-atom catalysts on amorphous substrates for electrocatalysis. Energy Materials, 2025, 5(1): 500001 DOI:10.20517/energymater.2024.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chu S.Opportunities and challenges for a sustainable energy future.Nature2012;488:294-303

[2]

Zhao D,Cao X.Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation.Chem Soc Rev2020;49:2215-64

[3]

Zhang C,Tan J.High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution.Nat Commun2020;11:3724 PMCID:PMC7381654

[4]

Zhou Y,Liu H.Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction.Nat Commun2023;14:3776 PMCID:PMC10290683

[5]

Seh ZW,Dickens CF,Nørskov JK.Combining theory and experiment in electrocatalysis: insights into materials design.Science2017;355:eaad4998

[6]

Luo Y,Khan U.Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density.Nat Commun2019;10:269 PMCID:PMC6336864

[7]

Wang A,Zhang T.Heterogeneous single-atom catalysis.Nat Rev Chem2018;2:65-81

[8]

Yang H,Jiang G,Hao Z.Heterogeneous selective oxidation over supported metal catalysts: from nanoparticles to single atoms.Appl Catal B Environ2023;325:122384

[9]

Liu L.Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles.Chem Rev2018;118:4981-5079 PMCID:PMC6061779

[10]

Qiao B,Yang X.Single-atom catalysis of CO oxidation using Pt1/FeOx.Nat Chem2011;3:634-41

[11]

Choi CH,Kwon HC.Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst.Nat Commun2016;7:10922 PMCID:PMC4786782

[12]

Bruix A,Matolínová I.Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum.Angew Chem Int Ed2014;53:10525-30

[13]

Lin J,Qiao B.Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction.J Am Chem Soc2013;135:15314-7

[14]

Yang M,Flytzani-Stephanopoulos M.Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction.J Am Chem Soc2013;135:3768-71

[15]

Zong L,Wu W.Anchoring single copper atoms to microporous carbon spheres as high-performance electrocatalyst for oxygen reduction reaction.Adv Funct Mater2021;31:2104864

[16]

Choi J,Choi J.Recent advances in 2D structured materials with defect-exploiting design strategies for electrocatalysis of nitrate to ammonia.Energy Mater2024;4:400020

[17]

He J,Li Z.Strategic defect engineering of metal-organic frameworks for optimizing the fabrication of single-atom catalysts.Adv Funct Mater2021;31:2103597

[18]

Rong X,Lu XL,Lu TB.Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction.Angew Chem Int Ed2020;59:1961-5

[19]

Shi X,Bo Y.Highly selective photocatalytic CO2 methanation with water vapor on single-atom platinum-decorated defective carbon nitride.Angew Chem Int Ed2022;61:e202203063

[20]

Liu Y,Jadhav AR.Unraveling the function of metal-amorphous support interactions in single-atom electrocatalytic hydrogen evolution.Angew Chem Int Ed2022;134:e202114160

[21]

Zhou Y.Progress and challenge of amorphous catalysts for electrochemical water splitting.ACS Mater Lett2021;3:136-47

[22]

Chen D,Zou Y.In situ evolution of highly dispersed amorphous CoOx clusters for oxygen evolution reaction.Nanoscale2017;9:11969-75

[23]

Wang J,Huang B,Xin HL.Amorphization activated ruthenium-tellurium nanorods for efficient water splitting.Nat Commun2019;10:5692 PMCID:PMC6908605

[24]

Gebauer D.Prenucleation clusters and non-classical nucleation.Nano Today2011;6:564-84

[25]

Chen G,Chen HM.An amorphous nickel-iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction.Adv Mater2019;31:e1900883

[26]

Zhu Y,Cui S.Multistep dissolution of lamellar crystals generates superthin amorphous Ni(OH)2 catalyst for UOR.Adv Mater2023;35:e2301549

[27]

Yang H,Guo P,Wu R.B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction.Appl Catal B Environ2020;261:118240

[28]

Kang Y,Gu H.Mesoporous metal-metalloid amorphous alloys: the first synthesis of open 3D mesoporous Ni-B amorphous alloy spheres via a dual chemical reduction method.Small2020;16:e1906707

[29]

Cheng H,Liu G.Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction.Adv Mater2020;32:e1902964

[30]

Zhang X,Yu P.Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution.Nat Catal2018;1:460-8

[31]

Wu G,Cui P.A general synthesis approach for amorphous noble metal nanosheets.Nat Commun2019;10:4855 PMCID:PMC6813339

[32]

Chen L,Wang N,Qian Y.Surface-amorphous and oxygen-deficient Li3VO4-δ as a promising anode material for lithium-ion batteries.Adv Sci2015;2:1500090 PMCID:PMC5033021

[33]

Yang J,Wang T.Novel hybrid of amorphous Sb/N-doped layered carbon for high-performance sodium-ion batteries.Chem Eng J2021;407:127169

[34]

Serrapede M,Castellino M.Li+ Insertion in nanostructured TiO2 for energy storage.Materials2019;13:21 PMCID:PMC6981765

[35]

Zhang K,Shi W.Copious dislocations defect in amorphous/crystalline/amorphous sandwiched structure P-NiMoO4 electrocatalyst toward enhanced hydrogen evolution reaction.ACS Nano2024;18:3791-800

[36]

Apostolova T.Femtosecond optical breakdown in silicon.Appl Surf Sci2022;572:151354

[37]

Jiang L.Repeatable nanostructures in dielectrics by femtosecond laser pulse trains.Appl Phys Lett2005;87:151104

[38]

Jiang L,Li B,Lu YF.Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application.Light Sci Appl2018;7:17134 PMCID:PMC6060063

[39]

Zhao L,Dong T.Laser synthesis of amorphous CoSx nanospheres for efficient hydrogen evolution and nitrogen reduction reactions.J Mater Chem A2022;10:20071-9

[40]

Liu Y,Chen Z.Fabrication of amorphous PdNiCuP nanoparticles as efficient bifunctional and highly durable electrocatalyst for methanol and formic acid oxidation.J Mater Sci Technol2022;122:148-55

[41]

McGee S,Goff J.Single-step direct laser writing of multimetal oxygen evolution catalysts from liquid precursors.ACS Nano2021;15:9796-807

[42]

Zhang R,Guo Z,Zhu L.Highly selective Pd nanosheet aerogel catalyst with hybrid strain induced by laser irradiation and P doping postprocess.Small2023;19:e2205587

[43]

Li B,Li X.Controllable synthesis of nanosized amorphous MoSx using temporally shaped femtosecond laser for highly efficient electrochemical hydrogen production.Adv Funct Mater2019;29:1806229

[44]

Budiyanto E,Weidenthaler C.Impact of single-pulse, low-intensity laser post-processing on structure and activity of mesostructured cobalt oxide for the oxygen evolution reaction.ACS Appl Mater Interfaces2021;13:51962-73 PMCID:PMC8587604

[45]

Lv C,Chen G.An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions.Angew Chem Int Ed2018;57:6073-6

[46]

Xi F,Harbauer K.Structural transformation identification of sputtered amorphous MoSx as an efficient hydrogen-evolving catalyst during electrochemical activation.ACS Catal2019;9:2368-80

[47]

Qiao A,Yue Y.Enhancing ionic conductivity in Ag3PS4 via mechanical amorphization.J Non-Cryst Solids2019;521:119476

[48]

Poryvaev AS,Fedin MV.Mitigation of pressure-induced amorphization in metal-organic framework ZIF-8 upon EPR control.ACS Appl Mater Interfaces2020;12:16655-61

[49]

Sabochick MJ.Radiation-induced amorphization of ordered intermetallic compounds CuTi, CuTi2 and CuTi3: a molecular-dynamics study.Phys Rev B Condens Matter1991;43:5243-52

[50]

Widmer RN,Casati N,Bennett TD.X-ray radiation-induced amorphization of metal-organic frameworks.Phys Chem Chem Phys2019;21:12389-95

[51]

Edinger M,Kerdoncuff H,Rades T.Quantification of microwave-induced amorphization of celecoxib in PVP tablets using transmission Raman spectroscopy.Eur J Pharm Sci2018;117:62-7

[52]

Fei H,Chen D.Single atom electrocatalysts supported on graphene or graphene-like carbons.Chem Soc Rev2019;48:5207-41

[53]

Li M,Si W,Huang C.Sp-hybridized nitrogen as new anchoring sites of iron single atoms to boost the oxygen reduction reaction.Angew Chem Int Ed2022;61:e202208238

[54]

Liu M,Cao S.Ferredoxin-inspired design of S-synergized Fe-Fe dual-metal center catalysts for enhanced electrocatalytic oxygen reduction reaction.Adv Mater2024;36:e2309231

[55]

Sun T,Yan H.Engineering the coordination environment of single cobalt atoms for efficient oxygen reduction and hydrogen evolution reactions.ACS Catal2021;11:4498-509

[56]

Zeng Z,Bin Yang H.Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution.Nat Commun2021;12:4088 PMCID:PMC8253796

[57]

Zhu Z,Wang Y.Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst.Adv Mater2020;32:e2004670

[58]

Zhao X,Kong XP,Li Y.Dual-metal hetero-single-atoms with different coordination for efficient synergistic catalysis.J Am Chem Soc2021;143:16068-77

[59]

Ma X,Zheng M.N2 reduction using single transition-metal atom supported on defective WS2 monolayer as promising catalysts: a DFT study.Appl Surf Sci2019;489:684-92

[60]

Zhang Z,Wang D.Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution.Nat Commun2022;13:2473 PMCID:PMC9072319

[61]

He Q,Jiang H.Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites.Adv Mater2020;32:e1906972

[62]

Dong Q,Zhu J.Ultrahigh mass activity for the hydrogen evolution reaction by anchoring platinum single atoms on active {100} facets of TiC via cation defect engineering.Adv Funct Mater2023;33:2210665

[63]

Gong F,Zhao Y.Universal sub-nanoreactor strategy for synthesis of yolk-shell MoS2 supported single atom electrocatalysts toward robust hydrogen evolution reaction.Angew Chem Int Ed2023;62:e202308091

[64]

Elbakkay MH,Farghali AA.Highly active atomic Cu catalyst anchored on superlattice CoFe layered double hydroxide for efficient oxygen evolution electrocatalysis.Int J Hydrogen Energy2022;47:9876-94

[65]

Zhang C,Yang Y.Highly conductive amorphous pentlandite anchored with ultrafine platinum nanoparticles for efficient pH-universal hydrogen evolution reaction.Adv Funct Mater2021;31:2105372

[66]

Wang H,Kim JH.Synergistic interactions of neighboring platinum and iron atoms enhance reverse water-gas shift reaction performance.J Am Chem Soc2023;145:2264-70

[67]

Zhou Y,Chen W.Dual-metal interbonding as the chemical facilitator for single-atom dispersions.Adv Mater2020;32:e2003484

[68]

Zhou Y,Zhao X.Electronegativity-induced charge balancing to boost stability and activity of amorphous electrocatalysts.Adv Mater2022;34:e2100537

[69]

Hannagan RT,Réocreux R.First-principles design of a single-atom–alloy propane dehydrogenation catalyst.Science2021;372:1444-7

[70]

Zheng T,Guo C.Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying.Nat Nanotechnol2021;16:1386-93

[71]

Ji K,Xu SM.Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1 Cu single-atom alloy catalyst.Angew Chem Int Ed2022;61:e202209849

[72]

Li X,Luo Y.PdFe single-atom alloy metallene for N2 electroreduction.Angew Chem Int Ed2022;61:e202205923

[73]

Han L,Liu W.Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation.Sci Adv2022;8:eabm3779 PMCID:PMC9159574

[74]

Li P,Duan X.Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides.Nat Commun2019;10:1711 PMCID:PMC6461613

[75]

Hou M,Zhao D.Microenvironment reconstitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting.Nat Commun2024;15:1342 PMCID:PMC10864306

[76]

Wu Y,Yu L.Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn-air batteries.Energy Stor Mater2022;45:805-13

[77]

Jiang Z,Hu C.Interlayer-confined NiFe dual atoms within MoS2 electrocatalyst for ultra-efficient acidic overall water splitting.Adv Mater2023;35:e2300505

[78]

Xi J,Wang D.Confined-interface-directed synthesis of palladium single-atom catalysts on graphene/amorphous carbon.Appl Catal B Environ2018;225:291-7

[79]

Loy ACM,Bhattacharya S.Advanced characterization techniques for the development of subatomic scale catalysts: one step closer to industrial scale fabrication.Mater Today Catal2024;4:100033

[80]

Ajayi TM,Rojas T.Characterization of just one atom using synchrotron X-rays.Nature2023;618:69-73

[81]

Qi P,Djitcheu X,Liu H.Techniques for the characterization of single atom catalysts.RSC Adv2021;12:1216-27 PMCID:PMC8978979

[82]

Terban MW.Structural analysis of molecular materials using the pair distribution function.Chem Rev2022;122:1208-72 PMCID:PMC8759070

[83]

Klingan K,Zaharieva I.Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases.ChemSusChem2014;7:1301-10

[84]

Tian H,Li Z.Disorder-tuned conductivity in amorphous monolayer carbon.Nature2023;615:56-61

[85]

Su X,Zhou J,Li J.Operando spectroscopic identification of active sites in NiFe prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction.J Am Chem Soc2018;140:11286-92

[86]

Duan Y,Hu SJ.Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis.Angew Chem Int Ed2019;58:15772-7

[87]

Zhang J,Shao Q,Huang X.Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction.Angew Chem Int Ed2019;58:5609-13

[88]

Yan J,Ji Y.Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation.Nat Commun2019;10:2149 PMCID:PMC6517434

[89]

Zhang R,Zhou X.Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution.Nat Commun2023;14:2460 PMCID:PMC10147718

[90]

Back S,Kim NY,Jung Y.Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements.Chem Sci2017;8:1090-6 PMCID:PMC5369399

[91]

Cheng N,Wang D.Platinum single-atom and cluster catalysis of the hydrogen evolution reaction.Nat Commun2016;7:13638 PMCID:PMC5141386

[92]

Zhang M,Ma CL,Liu YT.Highly active and selective electroreduction of N2 by the catalysis of Ga single atoms stabilized on amorphous TiO2 nanofibers.ACS Nano2022;16:4186-96

[93]

Chen W,Li F.Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation.Adv Funct Mater2019;29:1904278

[94]

Ma P,Chen H.Directing in-situ self-optimization of single-atom catalysts for improved oxygen evolution.J Energy Chem2023;80:284-90

[95]

Chen K,Wang F,Chu K.Main-group indium single-atom catalysts for electrocatalytic NO reduction to NH3.J Mater Chem A2023;11:6814-9

[96]

Liu W,Yan P.Fabrication of a single-atom platinum catalyst for the hydrogen evolution reaction: a new protocol by utilization of HxMoO3-x with plasmon resonance.ChemCatChem2018;10:946-50

[97]

Shen R,Peng Q.High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution.Chem2019;5:2099-110

[98]

Feng D,Qin R.Flower-like amorphous MoO3-x stabilized Ru single atoms for efficient overall water/seawater splitting.Adv Sci2023;10:e2300342 PMCID:PMC10288252

[99]

Liu C,Liang N,Ma J.Ir single atom catalyst loaded on amorphous carbon materials with high HER activity.Adv Sci2022;9:e2105392 PMCID:PMC9069379

[100]

Zhang Q,Duan-Mu FP.Isolated platinum atoms stabilized by amorphous tungstenic acid: metal-support interaction for synergistic oxygen activation.Angew Chem Int Ed2018;57:9351-6

[101]

Yang J,Liu X.Efficient and robust hydrogen evolution: phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites.Angew Chem Int Ed2018;57:9495-500

[102]

Hu Y,Shen T.Hollow carbon nanorod confined single atom Rh for direct formic acid electrooxidation.Adv Sci2022;9:e2205299 PMCID:PMC9799016

[103]

Cai C,Han S.Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets.ACS Catal2021;11:123-30

[104]

Luo X,Zhong H.Single-atom Ir-anchored 3D amorphous NiFe nanowire@nanosheets for boosted oxygen evolution reaction.ACS Appl Mater Interfaces2020;12:3539-46

[105]

Li D,Lv Y.An effective hybrid electrocatalyst for the alkaline HER: highly dispersed Pt sites immobilized by a functionalized NiRu-hydroxide.Appl Catal B Environ2020;269:118824

[106]

Lyu F,Jia Z.Two-dimensional mineral hydrogel-derived single atoms-anchored heterostructures for ultrastable hydrogen evolution.Nat Commun2022;13:6249 PMCID:PMC9586971

[107]

Chen S,Narváez Villarrubia CW.Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media.Nano Energy2019;66:104164

[108]

Wang J,Zou Y.Engineering the coordination environment of Ir single atoms with surface titanium oxide amorphization for superior chlorine evolution reaction.J Am Chem Soc2024;146:11152-63

[109]

Cheng X,Chen Y.Ligand charge donation-acquisition balance: a unique strategy to boost single Pt atom catalyst mass activity toward the hydrogen evolution reaction.ACS Catal2022;12:5970-8

[110]

Xu J,Liu H.Amorphous MoOX-stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution.Nano Energy2020;70:104529

[111]

Hu Y,Wang L.Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution.Adv Energy Mater2021;11:2002816

[112]

Wang R,Tan X.Amorphous doping promotes utilization of Fe-doped amorphous Zr(HPO4)2 for superb water oxidation electrocatalysis.Adv Mater Inter2022;9:2200387

[113]

Chen K,Xiang J,Li X.p-Block antimony single-atom catalysts for nitric oxide electroreduction to ammonia.ACS Energy Lett2023;8:1281-8

PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

/