Multifunctional MXene inks for printed electrochemical energy storage devices

Zhuo Li , Qinglong He , Hao Chen , Yiwen Chen , Chuijin Zeng , Tianyue Xu , Shungui Deng , Chuanfang Zhang

Energy Materials ›› 2025, Vol. 5 ›› Issue (1) : 500005

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (1) :500005 DOI: 10.20517/energymater.2024.31
Review

Multifunctional MXene inks for printed electrochemical energy storage devices

Author information +
History +
PDF

Abstract

Since the discovery of MXenes, the family has expanded rapidly in the past decade. With their fascinating properties, including high electrical conductivity, solution processability, tunable surface functionality, and excellent mechanical properties, MXenes have garnered significant enthusiasm from the academic community and industrial relevance. The most extensively studied of the many applications for MXene-based devices is electrochemical energy storage (EES). Importantly, MXene inks allow quick yet efficient production of personal EES devices through additive manufacturing. However, there are relatively few comprehensive summaries of reports on the processing of MXene inks for EES devices. This paper provides a comprehensive review of MXene synthesis, additive manufacturing strategies and the latest advancements in the printing of MXene-based high-performance EES devices including micro-supercapacitors and batteries. Besides, the current challenges for high precision and high-performance printing technology are also discussed. This review is expected to provide valuable insights for solution processing of MXene inks and may shed light on the large-scale application of MXenes toward the next generation of wearable electronics.

Keywords

Functional inks / MXenes / solution processing / energy storage devices / wearable electronics

Cite this article

Download citation ▾
Zhuo Li, Qinglong He, Hao Chen, Yiwen Chen, Chuijin Zeng, Tianyue Xu, Shungui Deng, Chuanfang Zhang. Multifunctional MXene inks for printed electrochemical energy storage devices. Energy Materials, 2025, 5(1): 500005 DOI:10.20517/energymater.2024.31

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Larcher D.Towards greener and more sustainable batteries for electrical energy storage.Nat Chem2015;7:19-29

[2]

Huang J,You Y.Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization.Adv Funct Mater2023;33:2213095

[3]

Zhang Y,Cao Y.Recent advances and challenges of electrode materials for flexible supercapacitors.Coord Chem Rev2021;438:213910

[4]

Keum K,Hong SY,Lee SS.Flexible/stretchable supercapacitors with novel functionality for wearable electronics.Adv Mater2020;32:e2002180

[5]

Pomerantseva E,Feng X,Gogotsi Y.Energy storage: the future enabled by nanomaterials.Science2019;366:eaan8285

[6]

Zhang YZ,Cheng T.Printed supercapacitors: materials, printing and applications.Chem Soc Rev2019;48:3229-64

[7]

Lethien C,Brousse T.Challenges and prospects of 3D micro-supercapacitors for powering the internet of things.Energy Environ Sci2019;12:96-115

[8]

Tian Y,Feng J.MXenes and their derivatives for advanced aqueous rechargeable batteries.Mater Today2022;52:225-49

[9]

Dunn B,Tarascon JM.Electrical energy storage for the grid: a battery of choices.Science2011;334:928-35

[10]

Salanne M,Naoi K.Efficient storage mechanisms for building better supercapacitors.Nat Energy2016;1:16070

[11]

Chen GZ.Supercapacitor and supercapattery as emerging electrochemical energy stores.Int Mater Rev2017;62:173-202

[12]

Sheberla D,Elias JS,Shao-Horn Y.Conductive MOF electrodes for stable supercapacitors with high areal capacitance.Nat Mater2017;16:220-4

[13]

Zheng S,Dong Y.Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability.Energy Environ Sci2020;13:821-9

[14]

Simon P.Perspectives for electrochemical capacitors and related devices.Nat Mater2020;19:1151-63

[15]

Tan C,Wu XJ.Recent advances in ultrathin two-dimensional nanomaterials.Chem Rev2017;117:6225-331

[16]

Zeraati A, Mirkhani SA, Sun P, Naguib M, Braun PV, Sundararaj U. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance.Nanoscale2021;13:3572-80

[17]

Lipatov A,Alhabeb M.Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers.Sci Adv2018;4:eaat0491

[18]

Maleski K,Fafarman AT.The broad chromatic range of two-dimensional transition metal carbides.Adv Opt Mater2021;9:2001563

[19]

Manzeli S,Pasquier D,Kis A.2D transition metal dichalcogenides.Nat Rev Mater2017;2:17033

[20]

Munkhbat B,Baranov DG,Olsson E.Transition metal dichalcogenide metamaterials with atomic precision.Nat Commun2020;11:4604 PMCID:PMC7490684

[21]

Zhao J,Yu Z.Rise of silicene: a competitive 2D material.Prog Mater Sci2016;83:24-151

[22]

Molle A,Tao L,Alam MH.Silicene, silicene derivatives, and their device applications.Chem Soc Rev2018;47:6370-87

[23]

Lv L,Chen K,Xiong Y.2D layered double hydroxides for oxygen evolution reaction: from fundamental design to application.Adv Energy Mater2019;9:1803358

[24]

Hu T,Williams GR.Layered double hydroxide-based nanomaterials for biomedical applications.Chem Soc Rev2022;51:6126-76

[25]

Lin Z,Chai Y.Emerging group-VI elemental 2D materials: preparations, properties, and device applications.Small2020;16:e2003319

[26]

Qiu M,Jeong T.Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications.Chem Soc Rev2018;47:5588-601

[27]

Lin Z,Zhang H.Research progress of MXenes and layered double hydroxides for supercapacitors.Inorg Chem Front2023;10:4358-92

[28]

Lamiel C,Warner JH.Beyond Ti-based MXenes: a review of emerging non-Ti based metal-MXene structure, properties, and applications.Mater Today2023;63:313-38

[29]

Gogotsi Y.The rise of MXenes.ACS Nano2019;13:8491-4

[30]

Naguib M,Presser V.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2.Adv Mater2011;23:4248-53

[31]

Anasori B,Gogotsi Y.2D metal carbides and nitrides (MXenes) for energy storage.Nat Rev Mater2017;2:1-17

[32]

Sinha A,Zhao H.MXene: an emerging material for sensing and biosensing.TrAC Trends Anal Chem2018;105:424-35

[33]

Hantanasirisakul K,Urbankowski P.Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties.Adv Elect Mater2016;2:1600050

[34]

Hantanasirisakul K.Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes).Adv Mater2018;30:e1804779

[35]

Huang H,Feng Y.Recent development and prospects of surface modification and biomedical applications of MXenes.Nanoscale2020;12:1325-38

[36]

Gao G,Du A.2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction.ACS Catal2017;7:494-500

[37]

Yang R,Mei L.Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials.Nat Synth2023;2:101-18

[38]

Li J,Vaziri S,Lemme MC.Efficient inkjet printing of graphene.Adv Mater2013;25:3985-92

[39]

Li J,Zhang P.Scalable fabrication and integration of graphene microsupercapacitors through full inkjet printing.ACS Nano2017;11:8249-56

[40]

Jun HY,Kim SH.Inkjet printing of few-layer enriched black phosphorus nanosheets for electronic devices.Adv Elect Mater2021;7:2100577

[41]

Li L,Bao X.Direct-ink-write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks.Adv Energy Mater2023;13:2203683

[42]

Shao Y,Wu X.Room-temperature high-precision printing of flexible wireless electronics based on MXene inks.Nat Commun2022;13:3223 PMCID:PMC9184614

[43]

Zhu Q,Simon P.Two-dimensional MXenes for electrochemical capacitor applications: progress, challenges and perspectives.Energy Stor Mater2021;35:630-60

[44]

Azadmanjiri J,Khezri B.Prospective advances in MXene inks: screen printable sediments for flexible micro-supercapacitor applications.J Mater Chem A2022;10:4533-57

[45]

Vural M,Bars-Pomes J.Inkjet printing of self-assembled 2D titanium carbide and protein electrodes for stimuli-responsive electromagnetic shielding.Adv Funct Mater2018;28:1801972

[46]

Jiang X,Hai T.Inkjet-printed MXene micro-scale devices for integrated broadband ultrafast photonics.NPJ 2D Mater Appl2019;3:34

[47]

Yu Z,Sun J.Cellulosic nonwovens incorporated with fully utilized MXene precursor as smart pressure sensor and multi-protection materials.Adv Funct Mater2024;2402707

[48]

Wu H,Ma Y.Aqueous MXene/xanthan gum hybrid inks for screen-printing electromagnetic shielding, joule heater, and piezoresistive sensor.Small2022;18:e2107087

[49]

Pan S,Yu L.2D MXene-integrated 3D-printing scaffolds for augmented osteosarcoma phototherapy and accelerated tissue reconstruction.Adv Sci2020;7:1901511 PMCID:PMC6974945

[50]

Cao WT,Mao DS,Ma MG.MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles.Adv Funct Mater2019;29:1905898

[51]

Zhang C,Seral-Ascaso A.Stamping of flexible, coplanar micro-supercapacitors using MXene inks.Adv Funct Mater2018;28:1705506

[52]

Zhang CJ,Kremer MP.Additive-free MXene inks and direct printing of micro-supercapacitors.Nat Commun2019;10:1795 PMCID:PMC6470171

[53]

Zhang YZ,Jiang Q,Kim H.MXene printing and patterned coating for device applications.Adv Mater2020;32:e1908486

[54]

Akuzum B,Anasori B.Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes.ACS Nano2018;12:2685-94

[55]

Xu S,Wei G,Gogotsi Y.Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors.Nano Energy2018;50:479-88

[56]

Zheng S,Fang K.High-voltage potassium ion micro-supercapacitors with extraordinary volumetric energy density for wearable pressure sensor system.Adv Energy Mater2021;11:2003835

[57]

Zheng S,Das P.Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems.Adv Mater2021;33:e2005449

[58]

Zhang Y,Zhao L.Flexible self-powered integrated sensing system with 3D periodic ordered black phosphorus@MXene thin-films.Adv Mater2021;33:e2007890

[59]

Levitt A,Phillips P.3D knitted energy storage textiles using MXene-coated yarns.Mater Today2020;34:17-29

[60]

Jiang Q,Maleski K.On-chip MXene microsupercapacitors for AC-line filtering applications.Adv Energy Mater2019;9:1901061

[61]

Hong SY,Lee J.3D printing of free-standing Ti3C2Tx/PEO architecture for electromagnetic interference shielding.Polymer2021;236:124312

[62]

Geng D,Chen Z.Direct synthesis of large-area 2D Mo2C on in situ grown graphene.Adv Mater2017; 29:1700072

[63]

Geng D,Li L.Controlled growth of ultrathin Mo2C superconducting crystals on liquid Cu surface.2D Mater2017;4:011012

[64]

Wang D,Filatov AS.Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes.Science2023;379:1242-7

[65]

Xiang M,Zheng J.Gas-phase synthesis of Ti2CCl2 enables an efficient catalyst for lithium-sulfur batteries.Innovation2024;5:100540 PMCID:PMC10746382

[66]

Alhabeb M,Mathis TS.Selective etching of silicon from Ti3SiC2 (MAX) To obtain 2D titanium carbide (MXene).Angewe Chem Intl Ed2018;130:5542-6

[67]

Wang L,Wang B.Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process.Electron Mater Lett2016;12:702-10

[68]

Li T,Huang L.Fluorine-free Ti3C2Tx (T = O, OH) nanosheets (~50-100 nm) for nitrogen fixation under ambient conditions.J Mater Chem A2019;7:14462-5

[69]

Li Y,Lin Z.A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte.Nat Mater2020;19:894-9

[70]

Pang SY,Yuan S.Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials.J Am Chem Soc2019;141:9610-6

[71]

Lim KRG,Wyatt BC,Gogotsi Y.Fundamentals of MXene synthesis.Nat Synth2022;1:601-14

[72]

Barsoum MW.The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates.Prog Solid State Chem2000;28:201-81

[73]

Mathis TS,Goad A.Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene.ACS Nano2021;15:6420-9

[74]

VahidMohammadi A,Gogotsi Y.The world of two-dimensional carbides and nitrides (MXenes).Science2021;372:eabf1581

[75]

Khaledialidusti R,Khazaei S.High-throughput computational discovery of ternary-layered MAX phases and prediction of their exfoliation for formation of 2D MXenes.Nanoscale2021;13:7294-307

[76]

Ghidiu M,Zhao MQ,Barsoum MW.Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance.Nature2014;516:78-81

[77]

Li T,Liu Q.Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment.Angew Chem Inter Ed2018;57:6115-9

[78]

Li M,Luo K.Element Replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes.J Am Chem Soc2019;141:4730-7

[79]

Li M,Qin G.Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries.ACS Nano2021;15:1077-85

[80]

Naguib M,Armstrong BL.Large-scale delamination of multi-layers transition metal carbides and carbonitrides "MXenes".Dalton Trans2015;44:9353-8

[81]

Naguib M,Barsoum MW.25th anniversary article: MXenes: a new family of two-dimensional materials.Adv Mater2014;26:992-1005

[82]

Alhabeb M,Anasori B.Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene).Chem Mater2017;29:7633-44

[83]

Maleski K,Gogotsi Y.Dispersions of two-dimensional titanium carbide MXene in organic solvents.Chem Mater2017;29:1632-40

[84]

Al-Temimy A,Mazzio KA.Enhancement of Ti3C2 MXene pseudocapacitance after urea intercalation studied by soft X-ray absorption spectroscopy.J Phys Chem C2020;124:5079-86

[85]

Mashtalir O,Mochalin VN.Intercalation and delamination of layered carbides and carbonitrides.Nat Commun2013;4:1716

[86]

Xu J,Zhang Q,Yu H.Intercalation effects on the electrochemical properties of Ti3C2Tx MXene nanosheets for high-performance supercapacitors.ACS Appl Nano Mater2022;5:8794-803

[87]

Li J,Lin C.Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification.Adv Energy Mater2017;7:1602725

[88]

Lipatov A,Lukatskaya MR,Gogotsi Y.Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes.Adv Elect Mater2016;2:1600255

[89]

Shahzad F,Hatter CB.Electromagnetic interference shielding with 2D transition metal carbides (MXenes).Science2016;353:1137-40

[90]

Greaves M,Wang J,Barg S.Investigating the rheology of 2D titanium carbide (MXene) dispersions for colloidal processing: progress and challenges.J Mater Res2021;36:4578-600

[91]

Abdolhosseinzadeh S,Zhang H,Zhang C.Perspectives on solution processing of two-dimensional MXenes.Mater Today2021;48:214-40

[92]

Uzun S,Hantanasirisakul K.Additive-free aqueous MXene inks for thermal inkjet printing on textiles.Small2021;17:2006376

[93]

Quain E,Kurra N.Direct writing of additive-free MXene-in-water ink for electronics and energy storage.Adv Mater Technol2019;4:1800256

[94]

Robertson GL. Food packaging: principles and practice, third edition. CRC press; 2005. p. 733.

[95]

Hu G,Jin X.Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics.Nat Commun2017;8:278 PMCID:PMC5561124

[96]

El-Kady MF.Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage.Nat Commun2013;4:1475

[97]

Beidaghi M.Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors.Energy Environ Sci2014;7:867

[98]

Peng YY,Kurra N.All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage.Energy Environ Sci2016;9:2847-54

[99]

Kurra N,Alshareef HN.Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering.Nano Energy2015;13:500-8

[100]

Wang N,Zhao Y,Qin R.Laser-cutting fabrication of Mxene-based flexible micro-supercapacitors with high areal capacitance.ChemNanoMat2019;5:658-65

[101]

Li X,Zhao Y.Layer-by-layer inkjet printing GO film anchored Ni(OH)2 nanoflakes for high-performance supercapacitors.Chem Eng J2019;375:121988

[102]

Ng LWT,Howe RCT.Printing of graphene and related 2D materials: technology, formulation and applications. Cham: Springer International Publishing; 2019. p. 220.

[103]

Wu CW,Chen IWP,Chang HT.Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application.Energy Stor Mater2020;25:563-71

[104]

Wen D,Liu L.Direct inkjet printing of flexible MXene/graphene composite films for supercapacitor electrodes.J Alloys Compd2022;900:163436

[105]

Yu L,Shao Y,Sun J.Versatile N-doped MXene ink for printed electrochemical energy storage application.Adv Energy Mater2019;9:1901839

[106]

Zhou G,Liu C,Mei C.3D printed Ti3C2Tx MXene/cellulose nanofiber architectures for solid-state supercapacitors: ink rheology, 3D printability, and electrochemical performance.Adv Funct Mater2022;32:2109593

[107]

Yuan M,Liu X.3D printing quasi-solid-state micro-supercapacitors with ultrahigh areal energy density based on high concentration MXene sediment.Chem Eng J2023;451:138686

[108]

Wen D,Liu L.Flexible and high-performance MXene/MnO2 film electrodes fabricated by inkjet printing: toward a new generation supercapacitive application.Adv Mater Inter2021;8:2101453

[109]

Sun P,Liu Q.An inkjet-printing ink based on porous NiS/N-MXene for high-performance asymmetric micro-supercapacitors and self-powered microelectronics.Chem Eng J2023;474:145466

[110]

Sangili A,Nain A.Stable carbon encapsulated titanium carbide MXene aqueous ink for fabricating high-performance supercapacitors.Energy Stor Mater2022;53:51-61

[111]

Orangi J,Davis VA.3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities.ACS Nano2019;14:640-50

[112]

Zhao J,Wei X,Song Y.Direct writing additive-free V2CTx MXene architectures enables Zn-ion hybrid capacitor with ultrahigh energy density.J Energy Stor2023;66:107481

[113]

Wen D,Liu L.Inkjet printing transparent and conductive MXene (Ti3C2Tx) films: a strategy for flexible energy storage devices.ACS Appl Mater Interfaces2021;13:17766-80

[114]

Alam A,Kim KW,Park HS.Direct ink writing (DIW) printed high-performance asymmetric supercapacitor based on 0D@2D silver-nanoparticles@MXene as anode and 0D@2D MnO2-nanoparticles@MXene as cathode materials.J Energy Stor2023;72:108227

[115]

Abdolhosseinzadeh S,Zhang C.Coating porous MXene films with tunable porosity for high-performance solid-state supercapacitors.ChemElectroChem2021;8:1911-7

[116]

Zhang S,Ruan Y,Han X.Electrostatic self-assembly of citrus based carbon nanosheets and MXene: flexible film electrodes and patterned interdigital electrodes for all-solid supercapacitors.J Energy Stor2023;58:106392

[117]

Li L,Zhang M,Zhang Z.Flexible Ti3C2Tx/PEDOT:PSS films with outstanding volumetric capacitance for asymmetric supercapacitors.Dalton Trans2019;48:1747-56

[118]

Wang Y,Dubbink D.Inkjet printing of δ-MnO2 nanosheets for flexible solid-state micro-supercapacitor.Nano Energy2018;49:481-8

[119]

McManus D,Withers F.Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures.Nat Nanotechnol2017;12:343-50

[120]

Torrisi F,Wu W.Inkjet-printed graphene electronics.ACS Nano2012;6:2992-3006

[121]

Pereira NM,Cunha THR.Aerosol-printed MoS2 ink as a high sensitivity humidity sensor.ACS Omega2022;7:9388-96 PMCID:PMC8945157

[122]

Carey T,Divitini G.Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics.Nat Commun2017;8:1202 PMCID:PMC5663939

[123]

Reis N.Ink jet deposition of ceramic suspensions: modeling and experiments of droplet formation.MRS Proc2000;625:S1946427400193224

[124]

Ma J,Cao Y.Aqueous MXene/PH1000 hybrid inks for inkjet-printing micro-supercapacitors with unprecedented volumetric capacitance and modular self-powered microelectronics.Adv Energy Mater2021;11:2100746

[125]

Zhang CJ,McEvoy N.Oxidation stability of colloidal two-dimensional titanium carbides (MXenes).Chem Mater2017;29:4848-56

[126]

Ataide VN,Gama LILM,Paixão TRLC.Electrochemical paper-based analytical devices: ten years of development.Anal Methods2020;12:1030-54

[127]

Somalu MR,Daud WRW.Screen-printing inks for the fabrication of solid oxide fuel cell films: a review.Renew Sustain Energy Rev2017;75:426-39

[128]

Abdolhosseinzadeh S,Verma A,Nüesch F.Turning trash into treasure: additive free MXene sediment inks for screen-printed micro-supercapacitors.Adv Mater2020;32:e2000716

[129]

Hussain I,Javed MS.MXene-based heterostructures: current trend and development in electrochemical energy storage devices.Progr Energy Combust Sci2023;97:101097

[130]

Li H,Liang J.Hydrous RuO2-decorated MXene coordinating with silver nanowire inks enabling fully printed micro-supercapacitors with extraordinary volumetric performance.Adv Energy Mater2019;9:1803987

[131]

Carlson A,Huang Y,Rogers JA.Transfer printing techniques for materials assembly and micro/nanodevice fabrication.Adv Mater2012;24:5284-318

[132]

Xu B,Zhang W.Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity.Adv Mater2016;28:3333-9

[133]

Zhang Y,Qin J.Recent progress of direct ink writing of electronic components for advanced wearable devices.ACS Appl Electron Mater2019;1:1718-34

[134]

Yang W,Byun JJ.3D printing of freestanding MXene architectures for current-collector-free supercapacitors.Adv Mater2019;31:e1902725

[135]

Li X,Fan X,Liang J.3D-printed stretchable micro-supercapacitor with remarkable areal performance.Adv Energy Mater2020;10:1903794

[136]

Wang J,Zhou J,Teng C.Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance.ACS Nano2022;16:6700-11

[137]

Zhou B,Yang D.Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance.ACS Appl Mater Interfaces2020;12:40859-69

[138]

Ma Z,Ma J.Ultraflexible and mechanically strong double-layered aramid nanofiber- Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding.ACS Nano2020;14:8368-82

[139]

Xie Y,Huang H.High-voltage asymmetric MXene-based on-chip micro-supercapacitors.Nano Energy2020;74:104928

[140]

Patil GC.Doctor blade: a promising technique for thin film coating. Singapore: Springer; 2023. pp. 509-30.

[141]

Guo T,Deng S.Rational design of Ti3C2Tx MXene inks for conductive, transparent films.ACS Nano2023;17:3737-49

[142]

Guo T,Gao M.Large-area smooth conductive films enabled by scalable slot-die coating of Ti3C2Tx MXene aqueous inks.Adv Funct Mater2023;33:2213183

[143]

Huang X.A facile, high-yield, and freeze-and-thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors.Adv Funct Mater2020;30:1910048

[144]

Lucero N,Datta D.The roles of MXenes in developing advanced lithium metal anodes.J Energy Chem2022;69:132-49

[145]

Zheng J,Tu Z,Tang T.Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries.Chem Soc Rev2020;49:2701-50

[146]

Fan X,Borodin O.Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries.Nat Nanotechnol2018;13:715-22

[147]

Shen K,Yang S.3D printing dendrite-free lithium anodes based on the nucleated MXene arrays.Energy Stor Mater2020;24:670-5

[148]

Chen Q,Zhang X.Vertically aligned MXene nanosheet arrays for high-rate lithium metal anodes.Adv Energy Mater2022;12:2200072

[149]

Ma J,Zhou F.All 3D printing lithium metal batteries with hierarchically and conductively porous skeleton for ultrahigh areal energy density.Energy Stor Mater2023;54:304-12

[150]

Zhang X,Li X.Dimensionally designed carbon-silicon hybrids for lithium storage.Adv Funct Mater2019;29:1806061

[151]

Chae S,Kim N,Cho J.Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries.Angew Chem Int Ed2020;59:110-35

[152]

Zhang CJ,Seral-Ascaso A.High capacity silicon anodes enabled by MXene viscous aqueous ink.Nat Commun2019;10:849 PMCID:PMC6382913

[153]

Pang Q,Kwok CY.Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes.Nat Energy2016;1:1-11

[154]

Tang H,Pan L.In situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries.Adv Sci2018;5:1800502 PMCID:PMC6145260

[155]

Wei C,Fan Z.Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N-Ti3C2 MXene framework toward advanced Li-S full batteries.Energy Stor Mater2021;41:141-51

[156]

Wang Y,Xia R.Printable two-dimensional V2O5/MXene heterostructure cathode for lithium-ion battery.J Electrochem Soc2021;168:020507

[157]

Zhang C,Park SH.Interconnected metallic membrane enabled by MXene inks toward high-rate anode and high-voltage cathode for Li-ion batteries.Adv Funct Mater2023;33:2213860

[158]

Chen D,Wu Z.A gelation-assisted approach for versatile MXene inks.Adv Funct Mater2022;32:2204372

[159]

Park JM,Baek SH.MXene ink hosting zinc anode for high performance aqueous zinc metal batteries.J Energy Chem2023;76:187-94

[160]

Wang Z,Wang H.3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity.ACS Nano2022;16:9105-16

[161]

Zheng J,Jin Y.An inkjet printed Ti3C2-GO electrode for the electrochemical sensing of hydrogen peroxide.J Electrochem Soc2018;165:B227-31

[162]

Su Y,Zhang Q.Printing-scalable Ti3C2Tx MXene-decorated janus separator with expedited Zn2+ flux toward stabilized Zn anodes.Adv Funct Mater2022;32:2204306

PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

/