Recent research progress in the application of Na3V2(PO4)2F3 cathode materials in sodium-ion batteries: synthesis, modification, and battery optimization

Yining Liang , Lin Xu , Zhengjian Chen , De Ning , Zhipeng Sun

Energy Materials ›› 2025, Vol. 5 ›› Issue (9) : 500115

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (9) :500115 DOI: 10.20517/energymater.2024.306
Review

Recent research progress in the application of Na3V2(PO4)2F3 cathode materials in sodium-ion batteries: synthesis, modification, and battery optimization

Author information +
History +
PDF

Abstract

Sodium vanadium fluorophosphate [Na3V2(PO4)2F3, NVPF], as a sodium (Na) super ionic conductor material, has attracted significant interest as a very promising cathode material for sodium-ion batteries due to its structural stability, rapid ion transport capability, and high operating potential. However, the insulating [PO4] units in NVPF isolate the V atoms, which results in low intrinsic electron conductivity and poor overall electrochemical performance, and the high cost also represents critical challenge that has impeded its widespread use. In recent years, the research focus has shifted to an enhancement of scalable fabrication technologies and improvement of operational robustness under extreme conditions. This has meant a realignment of the research paradigm from the modification of single materials to‌ an adaptive design of the entire battery system. This review assesses the research conducted on NVPF cathodes over the past three years from several perspectives, focusing on the feasible application of materials over a wide temperature range at high voltages, summarizing the challenges and required development strategies in future research.

Keywords

Sodium-ion battery, sodium vanadium fluorophosphate, cathode materials synthesis, materials modification / battery optimization

Cite this article

Download citation ▾
Yining Liang, Lin Xu, Zhengjian Chen, De Ning, Zhipeng Sun. Recent research progress in the application of Na3V2(PO4)2F3 cathode materials in sodium-ion batteries: synthesis, modification, and battery optimization. Energy Materials, 2025, 5(9): 500115 DOI:10.20517/energymater.2024.306

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Obama B.The irreversible momentum of clean energy.Science2017;355:126-9

[2]

Deng X,Ma L,Zhao N.Three-dimensional porous carbon materials and their composites as electrodes for electrochemical energy storage systems.Mater Chem Front2019;3:2221-45

[3]

Zeng X,Yin Y,Yue J.Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage.Mater Today Nano2019;8:100057

[4]

Liu X,Yang Y.A MoS2/Carbon hybrid anode for high-performance Li-ion batteries at low temperature.Nano Energy2020;70:104550

[5]

Usiskin R,Popovic J.Fundamentals, status and promise of sodium-based batteries.Nat Rev Mater2021;6:1020-35

[6]

Perveen T,Shahzad N,Ahmad A.Prospects in anode materials for sodium ion batteries - a review.Renew Sust Energ Rev2020;119:109549

[7]

Fan E,Wang Z.Sustainable recycling technology for Li-Ion batteries and beyond: challenges and future prospects.Chem Rev2020;120:7020-63

[8]

Jiao J,Li N.Tuning anionic redox activity to boost high-performance sodium-storage in low-cost Na0.67Fe0.5Mn0.5O2 cathode.J Energy Chem2022;73:214-22

[9]

Qi Y,Zhao J.Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes.Joule2018;2:2348-63

[10]

Hwang JY,Sun YK.Sodium-ion batteries: present and future.Chem Soc Rev2017;46:3529-614

[11]

Rajagopalan R,Jia C,Wang H.Understanding the sodium storage mechanisms of organic electrodes in sodium ion batteries: issues and solutions.Energy Environ Sci2020;13:1568-92

[12]

Xie F,Xu J.Investigation of Na7V3(P2O7)4/carbon composite as cathode material for sodium-ion battery: influences of carbon additives and voltage windows.J Energy Storage2024;77:109855

[13]

Fang Y,Xiao L,Cao Y.Phosphate framework electrode materials for sodium ion batteries.Adv Sci (Weinh)2017;4:1600392 PMCID:PMC5441506

[14]

Chen S,Shen L.Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries.Adv Mater2017;29

[15]

Zhuang S,Zheng M.A combined first principles and experimental study on Al-doped Na3V2(PO4)2F3 cathode for rechargeable Na batteries.Surf Coat Tech2022;434:128184

[16]

Zhou L,Zhao H,Zhao D.Intricate hollow structures: controlled synthesis and applications in energy storage and conversion.Adv Mater2017;29

[17]

Sun D,Liu P.MoS2/graphene nanosheets from commercial bulky MoS2 and graphite as anode materials for high rate sodium-ion batteries.Adv Energy Mater2018;8:1702383

[18]

Wang W,Wang S,Liu HK.Structural design of anode materials for sodium-ion batteries.J Mater Chem A2018;6:6183-205

[19]

Xue X,Zeng X.Two-step carbon modification of NaTi2(PO4)3 with improved sodium storage performance for Na-ion batteries.J Cent South Univ2018;25:2320-31

[20]

Huang Z,Wang C,Zhang Y.Molybdenum phosphide: a conversion-type anode for ultralong-life sodium-ion batteries.Chem Mater2017;29:7313-22

[21]

Sun D,Wang H,Ji X.Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency.Nano Energy2019;64:103937

[22]

Liu N,Zhu J.Crystal doping of K ion on Na site raises the electrochemical performance of NaTi2(PO4)3/C anode for sodium-ion battery.Ionics2020;26:3387-94

[23]

Lao M,Luo W,Sun W.Alloy-based anode materials toward advanced sodium-ion batteries.Adv Mater2017;29

[24]

Hao Y,Liu W.Depolarization of Li-rich Mn-based oxide via electrochemically active Prussian blue interface providing superior rate capability.Carbon Energy2023;5:e272

[25]

Su H,Yu H.Transition metal oxides for sodium-ion batteries.Energy Storage Mater2016;5:116-31

[26]

Cao Y,Gang H.Stability study of transition metal oxide electrode materials.J Power Sources2023;560:232710

[27]

Sang L,Wu Y.The improved solar weighted absorptance and thermal stability of desert sand coated with transition metal oxides for direct particle receiver.Sol Energy Mater Sol Cells2023;251:112158

[28]

Rao T,Jiang J,Liao W.Low dimensional transition metal oxide towards advanced electrochromic devices.Nano Energy2022;100:107479

[29]

Liu Z,Huang Y.Voltage issue of aqueous rechargeable metal-ion batteries.Chem Soc Rev2020;49:180-232

[30]

Camacho PS,Duttine M.Impact of synthesis conditions in Na-rich Prussian blue analogues.ACS Appl Mater Interfaces2021;13:42682-92

[31]

Li J,Xiao Y.Freestanding catalytic membranes assembled from blade-shaped Prussian blue analog sheets for flow-through degradation of antibiotic pollutants.Appl Catal B: Environ2023;336:122922

[32]

Chun J,Wei C,Zhang Y.Flexible and free-supporting Prussian blue analogs /MXene film for high-performance sodium-ion batteries.J Power Sources2023;576:233165

[33]

Han J,Han Q,Wang C.Synthesis of high-specific-capacity Prussian blue analogues for sodium-ion batteries boosted by grooved structure.J Alloys Compd2023;950:169928

[34]

Xu N,Hou T.Constructing an asymmetric supercapacitor based on Prussian blue analogues-derived cobalt selenide nanoframeworks and iron oxide nanoparticles.Electrochimica Acta2023;439:141686

[35]

Yang Y,Zeng Y,Xu J.Peroxymonosulfate activation by CuFe-Prussian blue analogues for the degradation of bisphenol S: effect, mechanism, and pathway.Chemosphere2023;331:138748

[36]

Okubo M,Talham DR.High rate sodium ion insertion into core-shell nanoparticles of Prussian blue analogues.Chem Commun (Camb)2014;50:1353-5

[37]

He M,Chartouni D.Assessment of the first commercial Prussian blue based sodium-ion battery.J Power Sources2022;548:232036

[38]

Yue Y,Guo B.Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications.Angew Chem Int Ed Engl2014;53:3134-7

[39]

Peng J,Liu Q.Prussian blue analogues for sodium-ion batteries: past, present, and future.Adv Mater2022;34:e2108384

[40]

Wang W,Hu Z.Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries.Nat Commun2020;11:980 PMCID:PMC7033191

[41]

Dong Y,Zhang F.Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries.J Mater Chem A2020;8:3252-61

[42]

Ni Q,Wu F.Polyanion-type electrode materials for sodium-ion batteries.Adv Sci (Weinh)2017;4:1600275 PMCID:PMC5357992

[43]

Zhao L,Zhao H.Polyanion-type electrode materials for advanced sodium-ion batteries.Mater Today Nano2020;10:100072

[44]

Yuan Y,Yang S.Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries.Energy Storage Mater2022;50:760-82

[45]

Gao Y,Liu X.Low-cost polyanion-type sulfate cathode for sodium-ion battery.Adv Energy Mater2021;11:2101751

[46]

Yuan D,Wu L.A honeycomb-layered Na3Ni2SbO6: a high-rate and cycle-stable cathode for sodium-ion batteries.Adv Mater2014;26:6301-6

[47]

You Y,Yin Y.High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries.Energy Environ Sci2014;7:1643-7

[48]

Wang L,Qiao R.Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries.J Am Chem Soc2015;137:2548-54

[49]

Jin T,Zhu K,Liu P.Polyanion-type cathode materials for sodium-ion batteries.Chem Soc Rev2020;49:2342-77

[50]

Xiang X,Chen J.Recent advances and prospects of cathode materials for sodium-ion batteries.Adv Mater2015;27:5343-64

[51]

Liang K,Ren Y,Ma J.Research progress on Na3V2(PO4)2F3-based cathode materials for sodium-ion batteries.Chin Chem Lett2023;34:107978

[52]

Rajagopalan R,Ji X,Wang H.Advancements and challenges in potassium ion batteries: a comprehensive review.Adv Funct Mater2020;30:1909486

[53]

Chen Y,Tian S,Qiu F.Recent progress and strategic perspectives of high-voltage Na3V2(PO4)2F3 cathode: fundamentals, modifications, and applications in sodium-ion batteries.Compos B: Eng2023;266:111030

[54]

Hu J,Wang Y.The role of fluorine in polyanionic cathode materials for sodium-ion batteries.Small Methods2025;:e2402099

[55]

Zhu L,Sun D,Wang H.A comprehensive review on the fabrication, modification and applications of Na3V2(PO4)2F3 cathodes.J Mater Chem A2020;8:21387-407

[56]

Bianchini M,Fauth F.Na3V2(PO4)2F3 revisited: a high-resolution diffraction study.Chem Mater2014;26:4238-47

[57]

Bianchini M,Brisset N.Comprehensive investigation of the Na3V2(PO4)2F3 - Na3V2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction.Chem Mater2015;27:3009-20

[58]

Chen X,Guo P.Rational design of two dimensional single crystalline Na3V2(PO4)2F3 nanosheets for boosting Na+ migration and mitigating grain pulverization.J Chem Eng2022;439:135533

[59]

Deng L,Xia Y.Stabilizing fluorine to achieve high-voltage and ultra-stable Na3V2(PO4)2F3 cathode for sodium ion batteries.Nano Energy2021;82:105659

[60]

Gu ZY,Cao JM.An advanced high-entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density.Adv Mater2022;34:e2110108

[61]

Li L,Su Y.Fluorine dissolution-induced capacity degradation for fluorophosphate-based cathode materials.ACS Appl Mater Interfaces2021;13:23787-93

[62]

Yang Z,Sun J.High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)2F3 for sodium-ion batteries.Energy Storage Mater2020;25:724-30

[63]

Yi H,Xu W,Zheng Q.VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes: analysis of electrochemical performance and kinetic properties.Nano Energy2018;47:340-52

[64]

Deng L,Goh K.Facile one-step carbothermal reduction synthesis of Na3V2(PO4)2F3/C serving as cathode for sodium ion batteries.Electrochimica Acta2019;298:459-67

[65]

Zhang B,Rousse G,Abakumov AM.Insertion compounds and composites made by ball milling for advanced sodium-ion batteries.Nat Commun2016;7:10308 PMCID:PMC4735632

[66]

Wang M,Wang H,Xie H.Synthesis and electrochemical performances of Na3V2(PO4)2F3/C composites as cathode materials for sodium ion batteries.RSC Adv2019;9:30628-36 PMCID:PMC9072216

[67]

Liu Q,Yang X.Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life.J Mater Chem A2015;3:21478-85

[68]

Li L,Sun X,Li L.High capacity-favorable tap density cathode material based on three-dimensional carbonous framework supported Na3V2(PO4)2F3 nanoparticles.Chem Eng J2018;331:712-9

[69]

Liu Q,Wei Z.Core/Double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries.ACS Appl Mater Interfaces2016;8:31709-15

[70]

Jiang T,Li A,Wei Y.Sol-gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries.J Alloys Compd2009;478:604-7

[71]

Eshraghi N,Mahmoud A,Vertruyen B.Sodium vanadium (III) fluorophosphate/carbon nanotubes composite (NVPF/CNT) prepared by spray-drying: good electrochemical performance thanks to well-dispersed CNT network within NVPF particles.Electrochimica Acta2017;228:319-24

[72]

Shen C,Wang G,Shao L.Na3V2(PO4)2F3@C dispersed within carbon nanotube frameworks as a high tap density cathode for high-performance sodium-ion batteries.J Mater Chem A2018;6:6007-14

[73]

Leng J,Wang J.Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion.Chem Soc Rev2019;48:3015-72

[74]

Yi H,Ling M.Scalable and economic synthesis of high-performance Na3V2(PO4)2F3 by a solvothermal-ball-milling method.ACS Energy Lett2019;4:1565-71

[75]

Hu F.Superior performance of carbon modified Na3V2(PO4)2F3 cathode material for sodium-ion batteries.Inorg Chem Commun2021;129:108653

[76]

Cai Y,Luo Z.Caging Na3V2(PO4)2F3 microcubes in cross-linked graphene enabling ultrafast sodium storage and long-term cycling.Adv Sci (Weinh)2018;5:1800680 PMCID:PMC6145241

[77]

Li Y,Zhong G.Fiber-shape Na3V2(PO4)2F3@N-Doped carbon as a cathode material with enhanced cycling stability for Na-ion batteries.ACS Appl Mater Interfaces2020;12:25920-9

[78]

Li X,Qian Q.Electrospinning-based strategies for battery materials.Adv Energy Mater2021;11:2000845

[79]

Qiu R,Guo J.Encapsulation of Na3(VO)2(PO4)2F into carbon nanofiber as an superior cathode material for flexible sodium-ion capacitors with high-energy-density and low-self-discharge.J Power Sources2020;466:228249

[80]

Shen X,Han M.Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries.Nat Commun2021;12:2848 PMCID:PMC8121810

[81]

Minart G,Weill F,Olchowka J.Increasing tap density of carbon-coated Na3V2(PO4)2F3 via mechanical grinding: good or bad idea?.ACS Appl Energy Mater2024;7:11334-42

[82]

Serras P,Goñi A,Rojo T.Electrochemical performance of mixed valence Na3V2O2x(PO4)2F3-2x/C as cathode for sodium-ion batteries.J Power Sources2013;241:56-60

[83]

Serras P,Goñi A.High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3-2x.J Mater Chem2012;22:22301

[84]

Zhu P,Guo H.Toward high-performance sodium storage cathode: construction and purification of carbon-coated Na3V2(PO4)2F3 materials.J Power Sources2022;546:231986

[85]

Jiang N,Cui C,Yang X.Synthesis and electrochemical performance of uniform carbon-coated Na3V2(PO4)2F3 using tannic acid as a chelating agent and carbon source.ACS Appl Energy Mater2022;5:249-56

[86]

Zhang J,Han Y,Liu W.A surface-modified Na3V2(PO4)2F3 cathode with high rate capability and cycling stability for sodium ion batteries.RSC Adv2024;14:13703-10 PMCID:PMC11044120

[87]

Wang S,Xu L.Manipulation of Na3V2(PO4)2F3 via aluminum doping to alter local electron states toward an advanced cathode for sodium-ion batteries.Rare Met2024;43:4253-62

[88]

Guan J,Zhou J.Microwave-assisted hydrothermal synthesis of Na3V2(PO4)2F3 nanocuboid@reduced graphene oxide as an ultrahigh-rate and superlong-lifespan cathode for fast-charging sodium-ion batteries.ACS Appl Mater Interfaces2024;

[89]

Al-Marri AH.Superior electrochemical properties of Na3V2(PO4)2F3/rGO composite cathode for high-performance sodium-ion batteries.J Solid State Electrochem2024;28:2861-72

[90]

Liang K,Li J.Engineering crystal growth and surface modification of Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries.Small2023;19:e2207562

[91]

Zhai X,Zhang Q.Temperature-dependent defect evolution and electrochemical performance enhancement of Na3V2(PO4)2F3.J Alloys Compd2023;952:170001

[92]

Lin Z.Phase formation in NaH2PO4-VOSO4-NaF-H2O system and rapid synthesis of Na3V2O2x(PO4)2F3-2x.Crystals2024;14:43

[93]

Wang S,Li J,Ren Y.Surfactant-assisted synthesis of self-assembled Na3V2(PO4)2F3@C microspheres as the cathode for Na-ion batteries.Vacuum2023;211:111894

[94]

Moossa B,Ahmed AM,Al-qaradawi S.Synergistic effect of NASICON Na3V2(PO4)2F3 and 2D MXene for high-performance symmetric Sodium-ion batteries.Mater Res Bull2025;182:113173

[95]

Guo S,Sharma N.Optimizing Sc-doped Na3V2(PO4)2F3/C as a high-performance cathode material for sodium-ion battery applications.Chem Mater2025;37:1500-12

[96]

Sun C,Xiong X,Sun H.Electronic/Ionic dual functional layer-coated Na3V2(PO4)2F3 cathode with high sodium storage performance.ACS Sustainable Chem Eng2024;12:10892-904

[97]

Yang Y,Tang AP.Na3V2(PO4)2F3-decorated Na3V2(PO4)2F3 as a high-rate and cycle-stable cathode material for sodium ion batteries.RSC Adv2024;14:11862-71

[98]

Qin Y,Zhao H.Effect of chelator content on the structural and electrochemical performance of Na3V2(PO4)2F3 by sol-gel preparation.CrystEngComm2022;24:4519-26

[99]

Mahato S,Gupta D.Vanadium substituted Fe, Cr co-doped high performance C/Na3V2(PO4)2F3 cathode for sodium-ion batteries.J Electroanal Chem2024;955:118046

[100]

Liang K,Li J,Ren Y.High-performance Na3V2(PO4)2F3 cathode obtained by a three-in-one strategy for self-sodium compensation, interface modification, and crosslinked carbon coatings.Appl Surface Sci2023;615:156412

[101]

Hu Z,Fan C.Synergistic effect, structural and morphology evolution, and doping mechanism of spherical Br-doped Na3V2(PO4)2F3/C toward enhanced sodium storage.Small2022;18:e2201719

[102]

Zhou Q,Ou R.Yolk-Shell Construction of Na3V2(PO4)2F3 with copper substitution microsphere as high-rate and long-cycling cathode materials for sodium-ion batteries.Small2024;20:e2310699

[103]

Lei L,Zhao H,Wei T.Large scale preparation of Na3V2(PO4)2F3 with cross-linked double carbon network for high energy density sodium ion batteries at -20 °C.J Energy Storage2024;78:109923

[104]

Guo R,Lu M.Na3V2(PO4)2F3@bagasse carbon as cathode material for lithium/sodium hybrid ion battery.Phys Chem Chem Phys2022;24:5638-45

[105]

Liang M,Yang Y.Carbon Nanofiber/ Na3V2(PO4)2F3 particle composites as a self-standing cathode for high-voltage flexible sodium-ion batteries.ACS Appl Nano Mater2023;6:22275-82

[106]

Song Z,Guo Z.Ultrafast synthesis of large-sized and conductive Na3V2(PO4)2F3 simultaneously approaches high tap density, rate and cycling capability.Adv Funct Mater2024;34:2313998

[107]

Wang J,Wang X.Electrostatically shielded transportation enabling accelerated Na+ diffusivity in high-performance fluorophosphate cathode for sodium-ion batteries.Adv Funct Mater2024;34:2315318

[108]

Ling R,Yang C.Three-dimensional ordered microporous Na3V2(PO4)2F3@C/carbon cloth as high-rate and stable flexible cathodes for Na-ion and Zn-ion batteries.Appl Surf Sci2023;620:156875

[109]

Gu ZY,Sun ZH.Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries.Sci Bull (Beijing)2020;65:702-10

[110]

Zhang LL,Li T,Yang XL.Multi-heteroatom doped carbon coated Na3V2(PO4)2F3 derived from ionic liquids.Dalton Trans2018;47:4259-66

[111]

Li F,Xia L,Wei J.Well-dispersed Na3V2(PO4)2F3@rGO with improved kinetics for high-power sodium-ion batteries.J Mater Chem A2020;8:12391-7

[112]

Yang X,Zhen W.Reversible Na+-extraction/insertion in nitrogen-doped graphene-encapsulated Na3V2(PO4)2F3@C electrode for advanced Na-ion battery.Ceram Int2020;46:9170-5

[113]

Hu L,Xiao S.Dually decorated Na3V2(PO4)2F3 by carbon and 3D graphene as cathode material for sodium-ion batteries with high energy and power densities.ChemElectroChem2020;7:3975-83

[114]

Guo H,Zhang X.Facile one-step hydrothermal synthesis of Na3V2(PO4)2F3/CNTs tetragonal micro-particles as high performance cathode material for Na-ion batteries.Front Chem2019;7:689 PMCID:PMC6813728

[115]

Kosova N.Mixed sodium-lithium vanadium fluorophosphates Na3-xLixV2(PO4)2F3: the origin of the excellent high-rate performance.J Power Sources2018;408:120-7

[116]

Li L,Tang L,Wang Y.Improved electrochemical performance of high voltage cathode Na3V2(PO4)2F3 for Na-ion batteries through potassium doping.J Alloys Compd2019;790:203-11

[117]

Liu W,Zheng Q,Zhang H.Y-doped Na3V2(PO4)2F3 compounds for sodium ion battery cathodes: electrochemical performance and analysis of kinetic properties.J Mater Chem A2017;5:10928-35

[118]

Criado A,Pérez-vicente C,Tirado J.Effect of chromium doping on Na3V2(PO4)2F3@C as promising positive electrode for sodium-ion batteries.J Electroanal Chem2020;856:113694

[119]

Guo C,Cui Z.In-situ structural evolution analysis of Zr-doped Na3V2(PO4)2F3 coated by N-doped carbon layer as high-performance cathode for sodium-ion batteries.J Energy Chem2022;65:514-23

[120]

Cao J,Chen Y.Improved sodium storage properties of co-doped Na3V2(PO4)2F3@graphene as anode material for sodium ion batteries.Ferroelectrics2021;584:221-9

[121]

Gu ZY,Sun ZH.Aliovalent-ion-induced lattice regulation based on charge balance theory: advanced fluorophosphate cathode for sodium-ion full batteries.Small2021;17:e2102010

[122]

Zhang Y,Xu H.Synthesis of uniform hierarchical Na3V1.95Mn0.05(PO4)2F3@C hollow microspheres as a cathode material for sodium-ion batteries.J Mater Chem A2018;6:4525-34

[123]

Li L,Chang R,He S.Unraveling the mechanism of optimal concentration for Fe substitution in Na3V2(PO4)2F3/C for sodium-ion batteries.Energy Storage Mater2021;37:325-35

[124]

Gu Z,Zhao X.High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries.InfoMat2021;3:694-704

[125]

Missaoui K,Amdouni N.Polyaniline-coated Na3V2(PO4)2F3 cathode enables fast sodium ion diffusion and structural stability in rechargeable batteries.ACS Appl Mater Interfaces2024;16:50550-60

[126]

Mani Kanta PL,Nandy S.Outstanding specific energy achieved via reversible cycling of V4+/V2+ redox couple in N-doped carbon coated Na3V2(PO4)2F3: an ex-situ XRD, XPS and XAS study.Mater Today Energy2025;48:101802

[127]

Sun C,Deng Z,Gao L.PTFE-derived carbon-coated Na3V2(PO4)2F3 cathode material for high-performance sodium ion battery.Electrochimica Acta2022;432:141187

[128]

Hu Y,Liu F.Dual-anion ether electrolyte enables stable high-voltage Na3V2(PO4)2F3 cathode under wide temperatures.J Power Sources2024;602:234405

[129]

Zhao W,Hu G.Facial construction of high rate Na3V2(PO4)2F3/C microspheres with fluorocarbon layer by deep-eutectic solvent synthesis.Electrochimica Acta2023;440:141718

[130]

Yang X,Xiang X,Chen C.An open-system synthesis approach to achieve high-rate Na3(VO)2(PO4)2F/C microcubes cathode for sodium-ion batteries.J Electroanal Chem2024;956:118088

[131]

Zhang Y,Tang Y,Huang Y.Amylopectin-assisted fabrication of in situ carbon-coated Na3V2(PO4)2F3 nanosheets for ultra-fast sodium storage.ACS Appl Mater Interfaces2022;14:40812-21

[132]

Wang M,Xin Y,Wu F.Nitrogen-doped carbon coated Na3V2(PO4)2F3 derived from polyvinylpyrrolidone as a high-performance cathode for sodium-ion batteries.ACS Appl Energy Mater2023;6:4453-61

[133]

Sun C,Deng ZR,Yang XL.Achieving high-performance Na3V2(PO4)2F3 cathode material through a bifunctional N-doped carbon network.ACS Appl Mater Interfaces2024;16:35179-89

[134]

Xu J,Wen Q.N/S dual-doped KB-decorated Na3V2(PO4)2F3 as high-performance cathode for advanced sodium storage properties.Ionics2024;30:7037-49

[135]

Wang A,Li X,Wang N.Codoping of carbon and boron composition in Na3V2(PO4)2F3 affects its sodium storage properties.J Electroanal Chem2024;974:118741

[136]

Zhang X,Zhang Y,Yao X.Diatomic-doped carbon layer decorated Na3V2(PO4)2F3 as a durable ultrahigh-stability cathode for sodium ion batteries.New J Chem2023;47:9611-7

[137]

Yu X,Li X.Realizing outstanding electrochemical performance with Na3V2(PO4)2F3 modified with an ionic liquid for sodium-ion batteries.RSC Adv2022;12:14007-17 PMCID:PMC9092440

[138]

Yu X,Li X.Ionic liquid-acrylic acid copolymer derived nitrogen-boron codoped carbon-covered Na3V2(PO4)2F3 as cathode material of high-performance sodium-ion batteries.Langmuir2022;38:7815-24

[139]

Zhang X,Cai Y,Yao X.Effects of nitrogen and sulfur atom regulation on electrochemical properties of Na3V2(PO4)2F3 cathode material for Na-ion batteries.Ceram Int2022;48:36129-35

[140]

Tang K,Zhang Y.Multilevel carbon composite construction of NASICON-type NaVPO4F/C/CNT cathode material for enhanced-performance sodium-ion batteries.J Mater Chem C2025;13:6605-13

[141]

Ma WL,Zhao XW.Ultra-fast-charging, long-duration, and wide-temperature-range sodium storage enabled by multiwalled carbon nanotube-hybridized biphasic polyanion-type phosphate cathode materials.ACS Appl Mater Interfaces2024;16:34819-29

[142]

Li L,Zhang S.Ion transport through carbon nanotubes enable highly crystalline Na3V2(PO4)2F3 cathode for ultra-stable sodium-ion storage.J Power Sources2023;576:233226

[143]

Zhang Q,Liu K,Zheng S.Synergistic coupling effect of electronic conductivity and interphase compatibility on high-voltage Na3V2(PO4)2F3 cathodes.ACS Sustainable Chem Eng2023;11:12992-3001

[144]

Gao J,Ni L.Robust cross-linked Na3V2(PO4)2F3 full sodium-ion batteries.Energy Environ Mater2024;7:e12485

[145]

Qin M,Lei M.Construction of Na3V2(PO4)2F3@C/CNTs nanocomposites with three-dimensional conductive network as cathode materials for sodium-ion batteries.J Electroanal Chem2022;920:116613

[146]

He J,Yang F,Huang H.Phase-manipulated hierarchically core-shell Na3(VO1-xPO4)2F1+2x (0 ≤ x ≤ 1)@Na3V2(PO4)3 and its synergistic effect with conformally wrapped reduced graphene oxide framework towards high-performance cathode for sodium-ion batteries.Mater Today Phys2022;27:100813

[147]

Xu S,Li X.PVA-regulated construction of 3D rGO-hosted Na3V2(PO4)2F3 for fast and stable sodium storage.J Energy Chem2024;99:100-9

[148]

Huang Q,Shi X.Na3V2O2(PO4)2F nanoparticles@reduced graphene oxide: a high-voltage polyanionic cathode with enhanced reaction kinetics for aqueous zinc-ion batteries.Chem Eng J2023;468:143738

[149]

Ou J,Deng H,Zhang H.Hydrothermally prepared composite of Na3V2(PO4)2F3 with gelatin and graphene used as a high-performance sodium ion battery cathode.J Alloys Compd2022;926:166857

[150]

Shi C,Tao T.Zero-Strain Na3V2(PO4)2F3@Rgo/CNT composite as a wide-temperature-tolerance cathode for Na-ion batteries with ultrahigh-rate performance.Small Methods2024;8:e2301277

[151]

Zheng Q,Lin L.Towards enhanced sodium storage by investigation of the Li ion doping and rearrangement mechanism in Na3V2(PO4)2F3 for sodium ion batteries.J Mater Chem A2018;6:4209-18

[152]

Kuang Q,Liang Z.Synthesis and electrochemical properties of Na-doped Li3V2(PO4)3 cathode materials for Li-ion batteries.J Power Sources2011;196:10169-75

[153]

Wu Q,Zhang S.Achieving a rapid Na+ migration and highly reversible phase transition of NASICON for sodium-ion batteries with suppressed voltage hysteresis and ultralong lifespan.Small2024;20:e2404660

[154]

Fu W,Wang P,Zhu K.A high-entropy carbon-coated Na3V1.9(Mg, Cr, Al, Mo, Nb)0.1(PO4)2F3 cathode for superior performance sodium-ion batteries.Ceram Int2024;50:16166-71

[155]

Yang J,Jiang G.Synthesis and investigation of sodium storage properties in Na3V1.9Fe0.1(PO4)2F3@N-CNTs cathode material for sodium ion batteries.Chem Eng J2024;485:149834

[156]

Puspitasari DA,Hung I,Lee T.Optimizing the Mg doping concentration of Na3V2-xMgx(PO4)2F3/C for enhanced sodiation/desodiation properties.ACS Sustainable Chem Eng2021;9:6962-71

[157]

Ren K,Liu H,Li Q.Low-valence Mg2+ doping suppresses irreversible phase transition of sodium-rich fluorophosphate upon additional Na+ deintercalation.ACS Appl Energy Mater2025;8:3066-73

[158]

Olchowka J,Broux T.Aluminum substitution for vanadium in the Na3V2(PO4)2F3 and Na3V2(PO4)2FO2 type materials.Chem Commun (Camb)2019;55:11719-22

[159]

Pineda-Aguilar N,Sánchez EM,Garza-tovar LL.Aluminum doped Na3V2(PO4)2F3 via sol-gel Pechini method as a cathode material for lithium ion batteries.J Sol-Gel Sci Technol2017;83:405-12

[160]

Wang J,Cao S,Wang Y.Boosting sodium-ion battery performance with binary metal-doped Na3V2(PO4)2F3 cathodes.J Colloid Interface Sci2024;665:1043-53

[161]

Chen Q,Pan S.Effects of Bi doping on the electrochemical performance of Na3V2(PO4)3F3 cathode material for sodium ion batteries.Solid State Ionics2024;414:116621

[162]

Puspitasari DA,Hernandha RFH.Enhanced electrochemical performance of Ca-doped Na3V2(PO4)2F3/C cathode materials for sodium-ion batteries.ACS Appl Mater Interfaces2024;16:496-506

[163]

Silva CHP,Rezende MVDS.Intrinsic defect and deformation on local structure caused by rare-earth ions in the Na3V2(PO4)2F3 cathode material.Physica Status Solidi (b)2024;261:2300348

[164]

Ghosh S,Mazumder M,Rousse G.High capacity and high-rate NASICON-Na3.75V1.25Mn0.75(PO4)3 cathode for Na-ion batteries via modulating electronic and crystal structures.Adv Energy Mater2020;10:1902918

[165]

Li T,Xu G.A novel NASICON-typed Na3V1.96Cr0.03Mn0.01(PO4)2F3 cathode for high-performance Na-ion batteries.J Energy Storage2024;104:114596

[166]

Cai C,Hu Z.Construction of superior performance Na3V2-xCrx(PO4)2F3/C cathode by homovalent doping strategy toward enhanced sodium ion storage.J Power Sources2023;571:233080

[167]

Yi X,Zhou Y.Effect of Cr3+ doping on the electrochemical performance of Na3V2(PO4)2F3/C cathode materials for sodium ion battery.Electrochimica Acta2023;437:141491

[168]

Gu Z,Guo J.Nano self-assembly of fluorophosphate cathode induced by surface energy evolution towards high-rate and stable sodium-ion batteries.Nano Res2023;16:439-48

[169]

Su R,Liang K.Mnx+ substitution to improve Na3V2(PO4)2F3-based electrodes for sodium-ion battery cathode.Molecules2023;28:1409 PMCID:PMC9920057

[170]

Tong S,Liu H.Titanium doping induced the suppression of irreversible phase transformation at high voltage for V-based phosphate cathodes of Na-ion batteries.ChemSusChem2023;16:e202300244

[171]

Nongkynrih J,Modak B,Tyagi A.Enhanced electrochemical properties of W-doped Na3V2(PO4)2F3@C as cathode material in sodium ion batteries.Electrochimica Acta2022;415:140256

[172]

Zhu L,Sun D.Engineering the crystal orientation of Na3V2(PO4)2F3@rGO microcuboids for advanced sodium-ion batteries.Mater Chem Front2020;4:2932-42

[173]

Park S,Kim S.Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries.Nano Res2019;12:911-7

[174]

Liu S,Zhang Y.Carbon quantum dot modified Na3V2(PO4)2F3 as a high-performance cathode material for sodium-ion batteries.J Mater Chem A2020;8:18872-9

[175]

Ponrouch A,Monti D.Towards high energy density sodium ion batteries through electrolyte optimization.Energy Environ Sci2013;6:2361

[176]

Sadan MK,Kim C.Enhanced rate and cyclability of a porous Na3V2(PO4)3 cathode using dimethyl ether as the electrolyte for application in sodium-ion batteries.J Mater Chem A2020;8:9843-9

[177]

Hwang J,Hagiwara R.Electrolytes toward high-voltage Na3V2(PO4)2F3 positive electrode durable against temperature variation.Adv Energy Mater2020;10:2001880

[178]

Liu F,Liang Y.Ordered vacancies as sodium ion micropumps in Cu-deficient copper indium diselenide to enhance sodium storage.Adv Mater2024;36:e2403131

[179]

Li J,Jin Y.A high-voltage cathode material with ultralong cycle performance for sodium-ion batteries.Small Methods2024;8:e2301742

[180]

Xie K,Yang L.Electrolyte design strategies to construct stable cathode-electrolyte interphases for high-voltage sodium-ion batteries.Adv Energy Mater2025;15:2405301

[181]

Alptekin H,Olsson E.Elucidation of the solid electrolyte interphase formation mechanism in micro-mesoporous hard-carbon anodes.Adv Mater Inter2022;9:2101267

[182]

Zhang J,Jia G,Wang M.Improving Na3V2(PO4)2F3 half-cell performance with NaBF4-enhanced sodium difluoro(oxalato)borate electrolyte.J Energy Chem2025;102:340-52

[183]

Liang H,Guo J.Self-purification and silicon-rich interphase achieves high-temperature (70 °C) sodium-ion batteries with nonflammable electrolyte.Energy Storage Mater2024;66:103230

[184]

Liang HJ,Zhao XX.Electrolyte chemistry toward ultrawide-temperature (-25 to 75 °C) sodium-ion batteries achieved by phosphorus/silicon-synergistic interphase manipulation.J Am Chem Soc2024;146:7295-304

[185]

Ren H,Liu Q,Liang J.Fully-printed flexible aqueous rechargeable sodium-ion batteries.Small2024;20:e2312207

[186]

Desai P,Meunier V.Mastering the synergy between Na3V2(PO4)2F3 electrode and electrolyte: a must for Na-ion cells.Energy Storage Mater2023;57:102-17

[187]

Zheng Y,Yu F.Utilizing weakly-solvated diglyme-based electrolyte to achieve a 10,000-cycles durable Na3V2(PO4)2F3 cathode endured at -20 °C.Nano Energy2022;102:107693

[188]

Wang X,Yao L,Jiang N.Anion/Cation solvation engineering for a ternary low-concentration electrolyte toward high-voltage and long-life sodium-ion batteries.Adv Funct Mater2024;34:2315007

[189]

Jiang M,Qiu Y.Electrolyte design with dual -C≡N groups containing additives to enable high-voltage Na3V2(PO4)2F3-based sodium-ion batteries.J Am Chem Soc2024;146:12519-29

[190]

Hwang J,Takiyama M,Hagiwara R.Inhibition of aluminum corrosion with the addition of the tris(pentafluoroethyl)trifluorophosphate anion to a sulfonylamide-based ionic liquid for sodium-ion batteries.J Electrochem Soc2022;169:080522

[191]

Yan Y,Cao J.Fluorinated ionic liquid mediated nanostructure with enhanced conductivity and fluorine retention in Na3V2(PO4)2F3 cathode toward high-performance sodium-ion batteries.Chem Eng J2024;498:155640

[192]

Li Z,Li P.Exposing the (002) active facet by reducing surface energy for a high-performance Na3V2(PO4)2F3 cathode.J Mater Chem A2024;12:7777-87

[193]

Zhang S,Chen K.Aromatic ketones as mild presodiating reagents toward cathodes for high-performance sodium-ion batteries.Angew Chem Int Ed Engl2024;63:e202317439

[194]

Yun DH,Kim J.A binder-driven cathode-electrolyte interphase via a displacement reaction for high voltage Na3V2(PO4)2F3 cathodes in sodium-ion batteries.J Mater Chem A2023;11:5540-7

[195]

Zhang Z,Rajagopalan R.A high-capacity self-sacrificial additive based on electroactive sodiated carbonyl groups for sodium-ion batteries.Chem Commun (Camb)2022;58:8702-5

[196]

Forero-saboya J,Healy Corominas R.Influence of formation temperature on cycling stability of sodium-ion cells: a case study of Na3V2(PO4)2F3|HC Cells.J Electrochem Soc2023;170:100529

[197]

Komayko AI,Fedotov SS.Advantages of a solid solution over biphasic intercalation for vanadium-based polyanion cathodes in Na-ion batteries.ACS Appl Mater Interfaces2023;15:43767-77

[198]

Goloviznina K,Sel O,Salanne M.Disclosing the interfacial electrolyte structure of Na-insertion electrode materials: origins of the desolvation phenomenon.ACS Appl Mater Interfaces2023;15:59380-8

[199]

Semykina DO,Kosova NV.Understanding of the mechanism and kinetics of the fast solid-state reaction between NaF and VPO4 to form Na3V2(PO4)2F3.Inorg Chem2022;61:10023-35

[200]

Deng L,Sun G.Constructing stable anion-tuned electrode/electrolyte interphase on high-voltage Na3V2(PO4)2F3 cathode for thermally-modulated fast-charging batteries.Angew Chem Int Ed Engl2022;61:e202213416

[201]

Zhang Y,Zhang K,Xu H.2D-lamellar stacked Na3V2(PO4)2F3@RuO2 as a high-voltage, high-rate capability and long-term cycling cathode material for sodium ion batteries.J Mater Chem A2022;10:11163-71

[202]

S., Biswas, K. Boosting sodium-ion battery performance with vanadium substituted Fe, Ni dual doped fluorophosphate cathode over a wide temperature range.J Power Sources2025;626:235734.

PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

/