Achieving ~40% power conversion efficiency increase of single-junction GaAs solar cells via temperature regulation

Shuang Wang , Baiqi Tian , Renqing Guo , Shuaitao Zhao , Jiteng Li , Jitong Sun , Lian Zhong , Xiangdong Liu , Bingqing Wei , Zhigang Li

Energy Materials ›› 2025, Vol. 5 ›› Issue (8) : 500095

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (8) :500095 DOI: 10.20517/energymater.2024.303
Article

Achieving ~40% power conversion efficiency increase of single-junction GaAs solar cells via temperature regulation

Author information +
History +
PDF

Abstract

Enhancing the power conversion efficiency (PCE) of solar cells is a constant and essential endeavor to advance the utilization of renewable electricity, especially for space and planetary exploration. The challenge of significantly enhancing the PCE of solar cells is considerable. This report examines the impact of temperature on the PCE of monocrystalline single-junction GaAs solar cells under 450/520/635 nm lasers and achieves ~40% increase over the PCE at room temperature when the temperature is reduced from 300 K to 160 K. The notable enhancement in PCE can be attributed to suppressing the lattice atoms’ thermal oscillations and mitigating thermal loss. Below 160 K, however, the radiative recombination produces many low-energy photons, which cannot overcome the GaAs bandgap, resulting in energy loss and a sharp PCE decrease. In addition, the onset of carrier freeze-out effects restricts further increase in PCE. Our study elucidates the optimal operating temperature of GaAs solar cells, paving the way for designing an ultra-high PCE energy supply for planet probes such as the Moon and Mars, where the temperature exceeds 160 K.

Keywords

GaAs solar cells / power conversion efficiency / nonradiative recombination / radiative recombination / temperature regulation

Cite this article

Download citation ▾
Shuang Wang, Baiqi Tian, Renqing Guo, Shuaitao Zhao, Jiteng Li, Jitong Sun, Lian Zhong, Xiangdong Liu, Bingqing Wei, Zhigang Li. Achieving ~40% power conversion efficiency increase of single-junction GaAs solar cells via temperature regulation. Energy Materials, 2025, 5(8): 500095 DOI:10.20517/energymater.2024.303

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Diau EW.Next-generation solar cells and conversion of solar energy.ACS Energy Lett2017;2:334-5

[2]

Shockley W.Detailed balance limit of efficiency of p-n junction solar cells.J Appl Phys1961;32:510-9

[3]

Wang K,Hou Y.Overcoming shockley-queisser limit using halide perovskite platform?.Joule2022;6:756-71

[4]

Li Z,Guo R.Doubling power conversion efficiency of Si solar cells.Adv Mater2024;36:2405724

[5]

Green MA,Yoshita M.Solar cell efficiency tables (version 64).Prog Photovolt Res Appl.2024;32:425-41

[6]

Gordon JM,Katz EA.Boosting silicon photovoltaic efficiency from regasification of liquefied natural gas.Energy2021;214:118907

[7]

Schulte KL,Braun AK.GaAs solar cells grown on acoustically spalled GaAs substrates with 27% efficiency.Joule2023;7:1529-42

[8]

Li Z,Han SY.Wide-bandgap perovskite/gallium arsenide tandem solar cells.Adv Energy Mater2020;10:1903085

[9]

Wu P,Cui L.Realization of 27.84% efficiency of the GaAs/PEDOT: PSS thin-film hybrid solar cell based on high solar energy absorption.Opt Laser Technol2023;164:109532

[10]

Núñez N,Vázquez M,Espinet P.Evaluation of the reliability of high concentrator GaAs solar cells by means of temperature accelerated aging tests.Prog Photovolt Res Appl2013;21:1104-13

[11]

Zuleeg R.Radiation effects in GaAs FET devices.Proc IEEE1989;77:389-407

[12]

Yoon GW,Boonmongkolras P,Jung HS.Perovskite tandem solar cells for low earth orbit satellite power applications.Adv Energy Mater2025;15:2400204

[13]

Tu Y,Xu G.Perovskite solar cells for space applications: progress and challenges.Adv Mater2021;33:2006545

[14]

Xu G,Tu Y.Calibration for space solar cells: progress, prospects, and challenges.Sol RRL2024;8:2300822

[15]

Mazouz H,Logerais P,Riou O.Numerical simulation of GaAs solar cell aging under electron and proton irradiation.IEEE J Photovoltaics2019;9:1774-82

[16]

Ataser T.The performance analysis of the GaAs/c-InN solar photovoltaic cell hetero-structure: temperature dependence.Opt Quant Electron2020;52:407

[17]

Strauss RDT.Voyager 2 enters interstellar space.Nat Astron2019;3:963-4

[18]

Liu H,Liu H.Human lunar base: “Lunar Palace 1” team of Beihang University unveils China’s “Lunar Palace” plan.Innovation2024;5:100592

[19]

Alnami N,Saha S.Temperature dependent behavior of sub-monolayer quantum dot based solar cell.Sol Energy Mater Sol Cells2023;259:112448

[20]

Garduno-nolasco E,Donoval D,Mikolasek M.Temperature dependence of InAs/GaAs quantum dots solar photovoltaic devices.J Semicond2014;35:054001

[21]

Ahmad N.Carrier freeze-out effects in semiconductor devices.J Appl Phys1987;61:1905-9

[22]

Piqueux S,Kleinböhl A.Mars thermal inertia and surface temperatures by the mars climate sounder.Icarus2024;419:115851

[23]

Cho Y,Fischer AJ.“S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells.Appl Phys Lett1998;73:1370-2

[24]

der Does de Bye J, Vink A. Minority carrier lifetime in p-type gallium phosphide.J Lumin1972;5:108-16

[25]

Murotani H,Takeda R.Correlation between excitons recombination dynamics and internal quantum efficiency of AlGaN-based UV-A multiple quantum wells.J Appl Phys2020;128:105704

[26]

Radziemska E.Thermal performance of Si and GaAs based solar cells and modules: a review.Prog Energy Combust Sci2003;29:407-24

[27]

Potscavage WJ Jr,Kippelen B.Critical interfaces in organic solar cells and their influence on the open-circuit voltage.Acc Chem Res2009;42:1758-67

[28]

Singh P.Temperature dependence of solar cell performance-an analysis.Sol Energy Mater Sol Cells2012;101:36-45

[29]

Keller RA.Tunneling model for electron transport and its temperature dependence in crystals of low carrier mobility. example: anthracene.J Chem Phys1962;36:2640-3

[30]

Li Z,Varela-Manjarres J.Light-induced colossal magnetoresistance and ultrasensitive hall resistance of intrinsic silicon.Adv Opt Mater2025;2403577

[31]

Smestad G.Semiconductors for solar cells.Sol Energy Mater Sol Cells1996;43:425-6

[32]

Campesato R.Effects of low temperatures and intensities on GaAs and GaAs/Ge solar cells.IEEE Trans Electron Devices1991;38:1233-7

[33]

Fan JC.Theoretical temperature dependence of solar cell parameters.Sol Cells1986;17:309-15

[34]

Perl EE,Geisz JF,Friedman DJ.Measurements and modeling of III-V solar cells at high temperatures up to 400 °C.IEEE J Photovoltaics2016;6:1345-52

[35]

Vadiee E,Zhang C.Temperature dependence of GaSb and AlGaSb solar cells.Curr Appl Phys2018;18:752-61

[36]

Beekman M,Linker TM.Material considerations for thermoelectric enhancement via modulation doping.Appl Phys A2020;126:517

[37]

Kavangary A,Azazoglu H.Temperature dependent electrical characteristics of a junction field effect transistor for cryogenic sub-attoampere charge detection.AIP Adv2019;9:025104

[38]

Weisberg LR.Auger recombination in GaAs.J Appl Phys1968;39:6096-8

[39]

Black J,Mayburg S.Recombination radiation in GaAs.J Appl Phys1963;34:178-80

[40]

Birey H.Radiative transitions induced in gallium arsenide by modest heat treatment.J Appl Phys1980;51:619-24

[41]

Bugajski M,Lagowski J.Native acceptor levels in Ga-rich GaAs.J Appl Phys1989;65:596-9

[42]

Huang J,Ma S.Low temperature photoluminescence study of GaAs defect states*.Chin Phys B2020;29:010703

[43]

Vurgaftman I,Ram-mohan LR.Band parameters for III-V compound semiconductors and their alloys.J Appl Phys2001;89:5815-75

[44]

Lautenschlager P,Logothetidis S.Interband critical points of GaAs and their temperature dependence.Phys Rev B1987;35:9174-89

[45]

Lambkin JD,Walsh S,Mcdonagh CJ.Temperature dependence of the photoluminescence intensity of ordered and disordered In0.48Ga0.52P.Appl Phys Lett1994;65:73-5

[46]

Reshchikov MA.Temperature dependence of defect-related photoluminescence in III-V and II-VI semiconductors.J Appl Phy2014;115:012010

[47]

Wang J,Zheng Y,Wang R.Temperature-dependent photoluminescence analysis of 1.0 MeV electron irradiation-induced nonradiative recombination centers in n+-p GaAs middle cell of GaInP/GaAs/Ge triple-junction solar cells.Chinese Phys Lett2017;34:076106

[48]

Farr P,Horenburg P,Rossow U.Unity quantum efficiency in III-nitride quantum wells at low temperature: experimental verification by time-resolved photoluminescence.Appl Phys Lett2021;119:011106

[49]

Ishii R,Susilo N.Radiative and nonradiative recombination processes in AlGaN quantum wells on epitaxially laterally overgrown AlN/sapphire from 10 to 500 K.Phys Status Solidi B2024;261:2400018

[50]

Chen R,Liu B.Optical and excitonic properties of crystalline ZnS nanowires: toward efficient ultraviolet emission at room temperature.Nano Lett2010;10:4956-61

[51]

Wang Z,Xing Y.Consistency on two kinds of localized centers examined from temperature-dependent and time-resolved photoluminescence in InGaN/GaN multiple quantum wells.ACS Photonics2017;4:2078-84

[52]

Niemeyer M,Walker AW.Measurement of the non-radiative minority recombination lifetime and the effective radiative recombination coefficient in GaAs.AIP Adv2019;9:045034

[53]

Mathur PC,Sharma RP.Dependence of minority carrier diffusion length on illumination level and temperature in single crystal and polycrystalline Si solar cells.J Appl Phys1981;52:6949-53

[54]

Koster LJA,Xie H.Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells.Appl Phys Lett2005;87:203502

[55]

Dale B.Spectral response of solar cells.J Appl Phys1961;32:1377-81

[56]

Ho C.Effect of short wavelength illumination on the characteristic bulk diffusion length in ribbon silicon solar cells.Solid-State Electron1981;24:115-20

[57]

Abudulimu A,Phillips AB.Comprehensive study of carrier recombination in high-efficiency CdTe solar cells using transient photovoltage.Sol RRL2024;8:2400131

[58]

Wang A.A detailed study on loss processes in solar cells.Energy2018;144:490-500

[59]

Liu C,Shen R.Dynamics and physical process of hot carriers in optoelectronic devices.Nano Energy2022;95:106977

[60]

Zhang Y,Liu S,Guillemoles J.Review of the mechanisms for the phonon bottleneck effect in III-V semiconductors and their application for efficient hot carrier solar cells.Prog Photovolt Res Appl2022;30:581-96

PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

/