Design of a polymer electrolyte membrane for enhanced zinc anode stability in reversible aqueous zinc-ion batteries

Qi Deng , Weibin Zhou , Hongrui Wang , Qiang Ma , Changzhu Li , Xiongwei Wu , Yuping Wu

Energy Materials ›› 2025, Vol. 5 ›› Issue (9) : 500103

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (9) :500103 DOI: 10.20517/energymater.2024.299
Article

Design of a polymer electrolyte membrane for enhanced zinc anode stability in reversible aqueous zinc-ion batteries

Author information +
History +
PDF

Abstract

Aqueous zinc-ion batteries (ZIBs) hold great promise for energy storage applications. Nevertheless, the realization of high-capacity ZIBs with extended cycle durability remains a significant scientific challenge, predominantly attributed to two inherent limitations: the uncontrollable dendritic growth and concomitant side reactions. In this study, we present a polymer electrolyte membrane denoted as TAC, which addresses these challenges by enhancing the uniform distribution of zinc ions. By incorporating phenolic hydroxyl groups from tannic acid (TA) onto the surface of cellulose fibers, TAC is synthesized, which not only effectively shields both the front and back surfaces of the zinc anode from corrosive effects of the liquid electrolyte, but also exhibits a high liquid-retention capacity under pressures up to 5 MPa. Combining density functional theory simulations with experimental investigations, we demonstrate that the phenolic hydroxyl groups from TA actively engage with zinc ions, thereby significantly reducing the desolvation energy during the plating/stripping processes of the zinc anode. The assembled battery utilizing 1% TAC achieves remarkable performance, retaining 83.1% of its discharge capacity after 1,000 cycles at a current density of 5 C. Moreover, it exhibits high reversibility, high coulombic efficiency of 99.9%, and an impressive lifespan exceeding 2,300 h at 0.5 mA cm-2. Furthermore, 1% TAC demonstrates excellent cycling stability across four different electrolyte systems [ZnSO4, Zn(CF3SO3)2, Zn(OAc)2, and ZnCl2], highlighting its outstanding compatibility across diverse electrolyte compositions. The exceptional performance of the assembled batteries underscores the efficacy of our design, offering a novel strategy for the development and fabrication of polymer electrolyte membranes tailored for aqueous ZIBs.

Keywords

Aqueous zinc ions batteries / tannic acid / electrolyte / cellulose / zinc anode

Cite this article

Download citation ▾
Qi Deng, Weibin Zhou, Hongrui Wang, Qiang Ma, Changzhu Li, Xiongwei Wu, Yuping Wu. Design of a polymer electrolyte membrane for enhanced zinc anode stability in reversible aqueous zinc-ion batteries. Energy Materials, 2025, 5(9): 500103 DOI:10.20517/energymater.2024.299

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu S,Wang C.Zinc ion batteries: bridging the gap from academia to industry for grid-scale energy storage.Angew Chem Int Ed2024;63:e202400045

[2]

Luo C,Xiao Y.Recent development in addressing challenges and implementing strategies for manganese dioxide cathodes in aqueous zinc ion batteries.Energy Mater2024;4:400036

[3]

Li J.Organic cathode materials for aqueous zinc-organic batteries.Energy Mater2024;4:400033

[4]

Cui Y,Guo L.Ultra-long Zn3V2O7(OH)2·2H2O nanowires grown on carbon cloth as cathode material for aqueous zinc-ion batteries.Energy Mater2023;3:300023

[5]

Miao L,Jiao L.Insights into the design of mildly acidic aqueous electrolytes for improved stability of Zn anode performance in zinc-ion batteries.Energy Mater2023;3:300014

[6]

Han M,Lu Q.Aqueous rechargeable Zn-iodine batteries: issues, strategies and perspectives.Small2024;20:e2310293

[7]

Li G,Zhang S.Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects.Adv Funct Mater2024;34:2301291

[8]

Ma Q,Lv S.Regulating zinc ion transport behavior and solvated structure towards stable aqueous Zn metal batteries.J Energy Chem2024;93:609-26

[9]

Qian Y.Interfacial engineering of manganese-based oxides for aqueous zinc-ion batteries: Advances, mechanisms, challenges and perspectives.J Energy Chem2024;99:553-79

[10]

Guo Y,Xu L.A cigarette filter-derived nitrogen-doped carbon nanoparticle coating layer for stable Zn-ion battery anodes.Energy Mater2022;2:200032

[11]

Zhu Q,Qiao S.Selective shielding of the (002) plane enabling vertically oriented zinc plating for dendrite-free zinc anode.Adv Mater2024;36:e2308577

[12]

Yuan Y,Pérez-Osorio MA.Diagnosing the electrostatic shielding mechanism for dendrite suppression in aqueous zinc batteries.Adv Mater2024;36:e2307708

[13]

Tu W,Song L,Ji G.Nanoengineered functional cellulose ionic conductor toward high- performance all-solid-state zinc-ion battery.Adv Funct Mater2024;34:2316137

[14]

Ge H,Xie X.Critical challenges and solutions: quasi-solid-state electrolytes for zinc-based batteries.Energy Environ Sci2024;17:3270-306

[15]

Zhang B,Li J.Biocompatible and stable quasi-solid-state zinc-ion batteries for real-time responsive wireless wearable electronics.Energy Environ Sci2024;17:3878-87

[16]

Liu C,Zhang L.Electrochemical hydrophobic tri-layer interface rendered mechanically graded solid electrolyte interface for stable zinc metal anode.Angew Chem Int Ed2024;63:e202318063

[17]

Cui Y,Xin W.Gradient quasi-solid electrolyte enables selective and fast ion transport for robust aqueous zinc-ion batteries.Adv Mater2024;36:e2308639

[18]

Wang J,Huang W.Enabling stable Zn anode with PVDF/CNTs nanocomposites protective layer toward high-performance aqueous zinc-ion batteries.Adv Funct Mater2024;34:2316083

[19]

Lee Y,Kim JH.Selective ion transport layer for stable aqueous zinc-ion batteries.Adv Funct Mater2024;34:2310884

[20]

Liu Z,Fan L.Construct robust epitaxial growth of (101) textured zinc metal anode for long life and high capacity in mild aqueous zinc-ion batteries.Adv Mater2024;36:e2305988

[21]

Wu T,Zhang Q.Helmholtz plane reconfiguration enables robust zinc metal anode in aqueous zinc-ion batteries.Adv Funct Mater2024;34:2315716

[22]

Al-Abbasi M,He H.Challenges and protective strategies on zinc anode toward practical aqueous zinc-ion batteries.Carbon Neutral2024;3:108-41

[23]

Wang Z,Zhou Z.Synergistic effect of 3D elastomer/super-ionic conductor hybrid fiber networks enables zinc anode protection for aqueous zinc-ion batteries.Adv Funct Mater2024;34:2313371

[24]

Zhu Y,Cui X.Engineering hosts for Zn anodes in aqueous Zn-ion batteries.Energy Environ Sci2024;17:369-85

[25]

Yan K,Hu F.A “polymer-in-salt” solid electrolyte enabled by fast phase transition route for stable Zn batteries.Adv Funct Mater2024;34:2307740

[26]

Li Y,He Y.A novel ultrathin multiple-kinetics-enhanced polymer electrolyte editing enabled wide-temperature fast-charging solid-state zinc metal batteries.Adv Funct Mater2024;34:2307736

[27]

Ji S,Qin S.Component fluctuation modulated gelation effect enable temperature adaptability in zinc-ion batteries.Adv Energy Mater2024;14:2400063

[28]

Wang Y,Hong H.Lean-water hydrogel electrolyte for zinc ion batteries.Nat Commun2023;14:3890 PMCID:PMC10314915

[29]

Qi R,Shi Y.Gel polymer electrolyte toward large-scale application of aqueous zinc batteries.Adv Funct Mater2023;33:2306052

[30]

He Q,Zhong Y.Highly entangled hydrogel enables stable zinc metal batteries via interfacial confinement effect.ACS Energy Lett2023;8:5253-63

[31]

Yan Y,Liu B.Tough hydrogel electrolytes for anti-freezing zinc-ion batteries.Adv Mater2023;35:e2211673

[32]

Chinnakutti KK,Gao H,Kidkhunthod P.Solid-state Zn-ion batteries using composite cellulose polyethylene oxide materials-Illustration of reaction and capacity fading mechanisms.Polymer2024;299:126949

[33]

Chen Y,Wang Y.Quasi-solid-state zinc ion rechargeable batteries for subzero temperature applications.ACS Appl Energy Mater2020;3:9058-65

[34]

Yang Z,Wu T.Thermally healable electrolyte-electrode interface for sustainable quasi-solid zinc-ion batteries.Angew Chem Int Ed2024;63:e202317457

[35]

Wang N,Sun M.Achieving wide-temperature-range sustainable zinc-ion batteries via magnesium-doped cathodes and gel electrolytes.ACS Sustain Chem Eng2024;12:3527-37

[36]

Xu L,Zheng X.Nanocellulose-carboxymethylcellulose electrolyte for stable, high-rate zinc-ion batteries.Adv Funct Mater2023;33:2302098

[37]

Li W,Liu R,Zhang H.Gel polymer-based composite solid-state electrolyte for long-cycle-life rechargeable zinc-air batteries.ACS Sustain Chem Eng2023;11:3732-9

[38]

Ma R,Wang X.Polymer hydrogel electrolytes for flexible and multifunctional zinc-ion batteries and capacitors.Energy Environ Mater2023;6:e12464

[39]

Yang L,Liu H,Zhang M.Investigating the zinc deposition behavior in aqueous zinc-ion batteries with PEG/cellulose/ZnCl2 water-in-salt electrolytes via a homemade visualized three-electrode tubular cell.ACS Sustain Chem Eng2023;11:10311-23

[40]

Li Y,You Y.Cellulose nanocrystals built multiscale hydrogel electrolyte for highly reversible all-flexible zinc ion batteries.Chem Eng J2024;496:154357

[41]

Lim GJH,Chan KK.Amorphous cellulose electrolyte for long life and mechanically robust aqueous structural batteries.Adv Funct Mater2024;34:2313531

[42]

Han X,Yanilmaz M.From nature, requite to nature: bio-based cellulose and its derivatives for construction of green zinc batteries.Chem Eng J2023;454:140311

[43]

Zhang H,Yan Y.A sustainable dual cross-linked cellulose hydrogel electrolyte for high-performance zinc-metal batteries.Nanomicro Lett2024;16:106 PMCID:PMC10837397

[44]

Li H,Huang Y.An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte.Energy Environ Sci2018;11:941-51

[45]

Gaussian 16 Rev. C.01/C.02 release notes. Available from: https://gaussian.com/relnotes/ [Last accessed on 16 May 2025]

[46]

Stephens PJ,Chabalowski CF.Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields.J Phys Chem1994;98:11623-7

[47]

Krishnan R,Seeger R.Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions.J Chem Phys1980;72:650-4

[48]

Grimme S,Goerigk L.Effect of the damping function in dispersion corrected density functional theory.J Comput Chem2011;32:1456-65

[49]

Dolg M,Stoll H.Energy-adjusted ab initio pseudopotentials for the first row transition elements.J Chem Phys1987;86:866-72

[50]

Pritchard BP,Didier B,Windus TL.New basis set exchange: an open, up-to-date resource for the molecular sciences community.J Chem Inf Model2019;59:4814-20

[51]

Tomasi J,Cammi R.Quantum mechanical continuum solvation models.Chem Rev2005;105:2999-3093

[52]

Lu T.Multiwfn: a multifunctional wavefunction analyzer.J Comput Chem2012;33:580-92

[53]

Lu T.Wavefunction and reactivity study of benzo[a]pyrene diol epoxide and its enantiomeric forms.Struct Chem2014;25:1521-33

[54]

Lu T.Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm.J Mol Graph Model2012;38:314-23

[55]

Zhang J.Efficient evaluation of electrostatic potential with computerized optimized code.Phys Chem Chem Phys2021;23:20323-8

[56]

Humphrey W,Schulten K.VMD: visual molecular dynamics.J Mol Graph1996;14:33-8

[57]

Grimme S,Ehrlich S.A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.J Chem Phys2010;132:154104

[58]

Zhao Y.The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals.Theor Chem Account2008;120:215-41

[59]

Weigend F.Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy.Phys Chem Chem Phys2005;7:3297-305

[60]

Marenich AV,Truhlar DG.Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.J Phys Chem B2009;113:6378-96

[61]

Lv D,Wang P.Pure cellulose lithium-ion battery separator with tunable pore size and improved working stability by cellulose nanofibrils.Carbohydr Polym2021;251:116975

[62]

Chen S,Wang J,Liu X.Bimetallic metal-organic framework-derived MoFe-PC microspheres for electrocatalytic ammonia synthesis under ambient conditions.J Mater Chem A2020;8:2099-104

[63]

Fernández S,Cuara E,Sierra U.Asphalt as raw material of graphene-like resources.Fuel2019;241:297-303

[64]

Romero-sarria F,Jiménez Barrera E.Experimental evidence of HCO species as intermediate in the fischer tropsch reaction using operando techniques.Appl Catal B Environ2020;272:119032

[65]

Ma M,Xu J,Ni Y.A simple and effective approach to fabricate lignin nanoparticles with tunable sizes based on lignin fractionation.Green Chem2020;22:2011-7

[66]

Yu B,Jang J.Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery.ACS Energy Lett2016;1:633-7

[67]

Adams RA,Pol VG.Mechanistic elucidation of thermal runaway in potassium-ion batteries.J Power Sources2018;375:131-7

[68]

Ouyang Q,Wang X,Huang X.Simultaneous DSC/TG analysis on the thermal behavior of PAN polymers prepared by aqueous free-radical polymerization.Polym Degrad Stabil2016;130:320-7

[69]

Zhang XQ,Cheng XB.Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes.Angew Chem Int Ed2018;57:5301-5

[70]

Yu H,Wang H.Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries.Nano Energy2022;99:107426

[71]

Tie Z,Deng S,Niu Z.Proton insertion chemistry of a zinc-organic battery.Angew Chem Int Ed2020;59:4920-4

[72]

Ye Z,Cao Z.High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode.Energy Storage Mater2021;37:378-86

[73]

Chen Z,Hou Y.Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries.Chem2022;8:2204-16

[74]

Amanchukwu CV,Qin J,Bao Z.Nonpolar alkanes modify lithium-ion solvation for improved lithium deposition and stripping.Adv Energy Mater2019;9:1902116

PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

/