All-solid-state lithium batteries with NMC955 cathodes: PVDF-free formulation with SBR and capacity recovery insights

Beatriz M. Gomes , Manuela C. Baptista , Ander Orue , Bhattacharjya Dhrubajyoti , Sylwia Terlicka , Peter Sjövall , Nico Zamperlin , Carlos Fonseca , Jasmin Smajic , Ville Kekkonen , Willar Vonk , Artur Tron , Andy Schena , Anwar Ahniyaz , Maria Helena Braga

Energy Materials ›› 2025, Vol. 5 ›› Issue (8) : 500091

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (8) :500091 DOI: 10.20517/energymater.2024.297
Article

All-solid-state lithium batteries with NMC955 cathodes: PVDF-free formulation with SBR and capacity recovery insights

Author information +
History +
PDF

Abstract

The nickel-rich NMC955 (LiNi0.90Mn0.05Co0.05O2) cathode, with minimal cobalt, is the zenith of LiNixMnyCo1-x-yO2 (NMC) technology but faces structural and thermal stability challenges, losing an average of 15% of its capacity in the first discharge. Here, by selecting appropriate materials and synthesis methods in an all-solid-state battery cell, this challenge is effectively mitigated. A sustainable fabrication of the LiNMC955 positive electrode, excluding poly(vinylidene fluoride) (PVDF) and using styrene-butadiene rubber, demonstrates high retention in all-solid-state cells, without additional interlayers or pressure, at room temperature. To prevent oxygen release, spurious phase formation, and magnetic frustration, simulations determined optimal cycling thresholds and curve morphologies for a Li0/Li6PS5Cl/NMC955 cell by “following the electrons”. This optimized routine ensures prolonged cycle life and performance demonstrated by sheet resistance/Hall effect, Scanning Electron Microscopy/Energy-Dispersive X-ray Spectroscopy (SEM/EDX), Atomic Force Microscopy/Scanning Kelvin Probe Microscopy, Time-of-Flight Secondary Ion Mass Spectrometry, Raman, calorimetry, and electrochemical analyses. The tailored preparation method and cycling regimen enabled the fabrication of a high-performance cathode, achieving capacities exceeding 110-120 mAh.g-1 at C discharging C-rate, after 200 cycles, with a self-recovering component shifting performance to theoretical capacities (192 mAh.g-1), emphasizing the cathode's pivotal role in all-solid-state performance.

Keywords

Li batteries / all-solid-state / NMC / Li6PS5Cl / cathode / wet process

Cite this article

Download citation ▾
Beatriz M. Gomes, Manuela C. Baptista, Ander Orue, Bhattacharjya Dhrubajyoti, Sylwia Terlicka, Peter Sjövall, Nico Zamperlin, Carlos Fonseca, Jasmin Smajic, Ville Kekkonen, Willar Vonk, Artur Tron, Andy Schena, Anwar Ahniyaz, Maria Helena Braga. All-solid-state lithium batteries with NMC955 cathodes: PVDF-free formulation with SBR and capacity recovery insights. Energy Materials, 2025, 5(8): 500091 DOI:10.20517/energymater.2024.297

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Randau S,Kötz O.Benchmarking the performance of all-solid-state lithium batteries.Nat Energy2020;5:259-70

[2]

Hou D,Yang Z.Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes.Nat Commun2022;13:3437 PMCID:PMC9200779

[3]

Chen S,Fan J,Golberg D.Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes.J Mater Chem A2018;6:11631-63

[4]

Vinayak AK,Huang X.Circular economies for lithium-ion batteries and challenges to their implementation.Next Mater2024;5:100231

[5]

Man Q,Shen H.MXenes and their derivatives for advanced solid-state energy storage devices.Adv Funct Mater2023;33:2303668

[6]

Tron A,Zhang N.Rational optimization of cathode composites for sulfide-based all-solid-state batteries.Nanomaterials2023;13:327 PMCID:PMC9866434

[7]

Liu W,Liu Y,Xu R.A critical review of single-crystal LiNixMnyCo1-x-yO2 cathode materials.Renewables2024;2:25-51

[8]

Bin Abu Sofian ADA,Majid S.Nickel-rich nickel-cobalt-manganese and nickel-cobalt-aluminum cathodes in lithium-ion batteries: Pathways for performance optimization.J Cleaner Prod2024;435:140324

[9]

Saaid FI,Winie T.Ni-rich lithium nickel manganese cobalt oxide cathode materials: a review on the synthesis methods and their electrochemical performances.Heliyon2024;10:e23968 PMCID:PMC10797156

[10]

Das D,Puravankara S.Electrolytes, additives and binders for NMC cathodes in Li-ion batteries-a review.Batteries2023;9:193

[11]

Wang Q,Li X,Gao P.Synthesis and characterization of Co-free NMA cathodes for fast charging lithium-ion batteries.J Alloys Compd2023;955:170226

[12]

Li W,Manthiram A.High-Nickel NMA: a cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries.Adv Mater2020;32:2002718

[13]

Maia BA,Guerreiro AN,Braga MH.Cathodes pinpoints for the next generation of energy storage devices: the LiFePO4 case study.J Phys Mater2024;7:025001

[14]

Baptista MC,Capela D.Conditioning solid-state anode-less cells for the next generation of batteries.Batteries2023;9:402

[15]

Braga MH,Oliveira JC.The role of defects in Li3ClO solid electrolyte: calculations and experiments.MRS Online Proceedings Library2013;1526:905

[16]

Baptista MC,Vale AB.In-series all-solid-state anode-less cells.J Energy Storage2024;102:113983

[17]

Li S,Yi Q.Structural and electrochemical properties of LiMn0.6Fe0.4PO4 as a cathode material for flexible lithium-ion batteries and self-charging power pack.Nano Energy2018;52:510-6

[18]

Gu H,Li Q.Electrochemical properties of Li4Ti5O12 coated LiMn0.6Fe0.4PO4 prepared by rheological phase reaction method.J Electrochem Soc2024;171:040502

[19]

Nguyen MT,Berrocal JA,Steiner U.An electrolyte additive for the improved high voltage performance of LiNi0.5Mn1.5O4 (LNMO) cathodes in Li-ion batteries.J Mater Chem A2023;11:7670-8

[20]

Jiang H,Zhu W.Boosting cycling stability by regulating surface oxygen vacancies of LNMO by rapid calcination.Nano Res2024;17:2671-7

[21]

Hofmann A,Bohn N,Binder JR.Additives for cycle life improvement of high-voltage LNMO-based Li-ion cells.ChemElectroChem2019;6:5255-63

[22]

Malik M,Azimi G.Review on the synthesis of LiNixMnyCo1-x-yO2 (NMC) cathodes for lithium-ion batteries.Mater Today Energy2022;28:101066

[23]

Li M.Cobalt in lithium-ion batteries.Science2020;367:979-80

[24]

Noerochim L,Idris NH.Recent development of nickel-rich and cobalt-free cathode materials for lithium-ion batteries.Batteries2021;7:84

[25]

Xu C,Lee J.Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries.Nat Mater2021;20:84-92

[26]

Kim U,Kaghazchi P,Sun Y.Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries.ACS Energy Lett2019;4:576-82

[27]

Emley B,Zhao L.Impact of fabrication methods on binder distribution and charge transport in composite cathodes of all-solid-state batteries.Mater Futures2023;2:045102

[28]

Gomes BM,Braga MH.A perspective on the building blocks of a solid-state battery: from solid electrolytes to quantum power harvesting and storage.J Mater Chem A2024;12:690-722

[29]

Yu C,Hageman J.Facile synthesis toward the optimal structure-conductivity characteristics of the argyrodite Li6PS5Cl solid-state electrolyte.ACS Appl Mater Interfaces2018;10:33296-306

[30]

Nikodimos Y,Taklu BW,Hwang BJ.Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders.Energy Environ Sci2022;15:991-1033

[31]

Wang Z,Ji X.Lithium anode interlayer design for all-solid-state lithium-metal batteries.Nat Energy2024;9:251-62

[32]

Liu Y,Yoon SG.Aluminum foil negative electrodes with multiphase microstructure for all-solid-state Li-ion batteries.Nat Commun2023;14:3975 PMCID:PMC10354103

[33]

Zhong X,Chen L.Binding mechanisms of PVDF in lithium ion batteries.Appl Surf Sci2021;553:149564

[34]

Cordner A,Cousins IT.PFAS Contamination in europe: generating knowledge and mapping known and likely contamination with “expert-reviewed” journalism.Environ Sci Technol2024;58:6616-27

[35]

Sonne C,Rinklebe J.EU need to protect its environment from toxic per- and polyfluoroalkyl substances.Sci Total Environ2023;876:162770

[36]

Singer C,Daub R.Influence of the slurry composition on thin-film components for the wet coating process of sulfide-based all-solid-state batteries.J Energy Storage2023;68:107703

[37]

Gao J,Gao Y.Scalable wet-slurry fabrication of sheet-type electrodes for sulfide all-solid-state batteries and performance enhancement via optimization of Ni-rich cathode coating layer.eTransportation2023;17:100252

[38]

Ruhl J,Ghidiu M.Impact of solvent treatment of the superionic argyrodite Li6PS5Cl on solid-state battery performance.Adv Energy Sustain Res2021;2:2000077

[39]

Tan DHS,Deng Z.Enabling thin and flexible solid-state composite electrolytes by the scalable solution process.ACS Appl Energy Mater2019;2:6542-50

[40]

Rolandi AC,Casado N,Mecerreyes D.Unlocking sustainable power: advances in aqueous processing and water-soluble binders for NMC cathodes in high-voltage Li-ion batteries.RSC Sustain2024;2:2125-49

[41]

Demiryürek R,Hatipoglu G.Roll-to-roll manufacturing method of aqueous-processed thick LiNi0.5Mn0.3Co0.2O2 electrodes for lithium-ion batteries.Int J Energy Res2021;45:21182-94

[42]

Surace Y,Cupid DM.The rate capability performance of high-areal-capacity water-based NMC811 electrodes: the role of binders and current collectors.Batteries2024;10:100

[43]

Isozumi H,Tatara R.Impact of newly developed styrene-butadiene-rubber binder on the electrode performance of high-voltage LiNi0.5Mn1.5O4 electrode.ACS Appl Energy Mater2020;3:7978-87

[44]

Yabuuchi N,Misaki K,Komaba S.Electrochemical properties of LiCoO2 electrodes with latex binders on high-voltage exposure.J Electrochem Soc2015;162:A538

[45]

Wu Q,Prakash J,Lu W.Investigations on high energy lithium-ion batteries with aqueous binder.Electrochim Acta2013;114:1-6

[46]

Kasnatscheew J,Streipert B.Lithium ion battery cells under abusive discharge conditions: electrode potential development and interactions between positive and negative electrode.J Power Sources2017;362:278-82

[47]

Dose WM,Grey CP.Effect of anode slippage on cathode cutoff potential and degradation mechanisms in Ni-rich Li-ion batteries.Cell Rep Phys Sci2020;1:100253

[48]

Zhang SS.The effect of the charging protocol on the cycle life of a Li-ion battery.J Power Sources2006;161:1385-91

[49]

Kresse G.Ab initio molecular dynamics for liquid metals.Phys Rev B1993;47:558

[50]

Perdew JP.Accurate and simple analytic representation of the electron-gas correlation energy.Phys Rev B1992;45:13244-9

[51]

Trasatti S.The absolute electrode potential: an explanatory note (Recommendations 1986).Pure Appl Chem1986;58:955-66

[52]

Nipan GD.Isobaric-isothermal polyhedra of solid solutions in the Li-Ni-Mn-Co-O system.Inorg Mater2021;57:518-23

[53]

Walther F,Fuchs T.Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry.Chem Mater2019;31:3745-55

[54]

Taklu BW,Nikodimos Y.Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries.Nano Energy2021;90:106542

[55]

Li X,Abbas SM.Silver nanocoating of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries.Micromachines2023;14:907

[56]

Byeon Y,Yang G.Conductive carbon embedded beneath cathode active material for longevity of solid-state batteries.J Mater Chem A2024;12:8359-69

[57]

Jung YH,Kim DK.Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries.J Mater Chem A2013;1:11350-4

[58]

Araño KG,Armstrong BL.Carbon coating influence on the formation of percolating electrode networks for silicon anodes.ACS Appl Energy Mater2023;6:11308-21

[59]

Nam JS,Lee SH.Densification and charge transport characterization of composite cathodes with single-crystalline LiNi0.8Co0.15Al0.05O2 for solid-state batteries.Energy Storage Mater2022;46:155-64

[60]

Rajagopal R,Jung YJ,Ryu K.Rapid Synthesis of highly conductive Li6PS5Cl argyrodite-type solid electrolytes using pyridine solvent.ACS Appl Energy Mater2022;5:9266-72

PDF

232

Accesses

0

Citation

Detail

Sections
Recommended

/