Electronic modification of NaCrO2 via Ni2+ substitution as efficient cathode for sodium-ion batteries

Jingyao Cai , Yanbing Zhu , Zhiguo Zhang , Jiandong Zhang , Liyuan Tian , Pengkun Gao , Yali Zhang , Mingkui Wang , Yan Shen

Energy Materials ›› 2024, Vol. 4 ›› Issue (6) : 400073

PDF
Energy Materials ›› 2024, Vol. 4 ›› Issue (6) :400073 DOI: 10.20517/energymater.2024.28
Article

Electronic modification of NaCrO2 via Ni2+ substitution as efficient cathode for sodium-ion batteries

Author information +
History +
PDF

Abstract

The feature of high theoretical capacity, long thermal stability, and low-cost fabrication offers the layered transition metal oxide NaCrO2 as an excellent candidate for sodium-ion batteries. Here, we show an effective method for electronic modulation of NaCrO2 by partial substitution of Cr3+ with low-valent Ni2+ to produce NaCr0.95Ni0.05O2 as an efficient cathode for these batteries. We found that Ni2+ substitution plays a critical role in the ionic character of transition metal-oxygen bonds, which increases the interlayer separation and thus improves sodium-ion diffusion kinetics. Furthermore, Ni2+ substitution reduces the deterioration of NaCrO2 throughout charge-discharge processes and thus boosts the cycle performance of the materials. The resultant NaCr0.95Ni0.05O2 cathode displays a remarkable rate performance with specific capacities of 91.2 mAh g-1 at 50 C and a high retention (~80%) of the initial capacity after cycling for 1,000 cycles at 10 C.

Keywords

Sodium-ion battery / electronic structure / charge compensation / rate performance

Cite this article

Download citation ▾
Jingyao Cai, Yanbing Zhu, Zhiguo Zhang, Jiandong Zhang, Liyuan Tian, Pengkun Gao, Yali Zhang, Mingkui Wang, Yan Shen. Electronic modification of NaCrO2 via Ni2+ substitution as efficient cathode for sodium-ion batteries. Energy Materials, 2024, 4(6): 400073 DOI:10.20517/energymater.2024.28

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang Y,Li X.Electrode materials of sodium-ion batteries toward practical application.ACS Energy Lett2018;3:1604-12

[2]

Eng AYS,Lum Y.Theory-guided experimental design in battery materials research.Sci Adv2022;8:eabm2422 PMCID:PMC9094674

[3]

Du M,Guo J.Direct reuse of oxide scrap from retired lithium-ion batteries: advanced cathode materials for sodium-ion batteries.Rare Met2023;42:1603-13

[4]

Huang Z,Zhao X.Hollow Na0.62K0.05Mn0.7Ni0.2Co0.1O2 polyhedra with exposed stable {001} facets and K riveting for sodium-ion batteries.Sci China Mater2023;66:79-87

[5]

Huang Z,Zhao X.Suppressing oxygen redox in layered oxide cathode of sodium-ion batteries with ribbon superstructure and solid-solution behavior.J Mater Sci Technol2023;160:9-17

[6]

Komaba S,Ishikawa T.Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries.Adv Funct Mater2011;21:3859-67

[7]

Kubota K,Nakayama T.New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction.J Phys Chem C2015;119:166-75

[8]

Xia X.NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes.Electrochem Solid State Lett2012;15:A1

[9]

Yu C,Jung H.NaCrO2 cathode for high-rate sodium-ion batteries.Energy Environ Sci2015;8:2019-26

[10]

Ikhe AB,Manasi M,Sohn KS.Unprecedented cyclability and moisture durability of NaCrO2 sodium-ion battery cathode via simultaneous Al doping and Cr2O3 coating.ACS Appl Mater Interfaces2023;15:14958-69

[11]

Wable M,Capraz ÖÖ.Probing electrochemical strain generation in sodium chromium oxide (NaCrO2) cathode in Na-ion batteries during charge/discharge.Energy Adv2024;3:601-8

[12]

Ding J,Sun Q.Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries.Electrochem Commun2012;22:85-8

[13]

Liang L,Denis DK.Comparative investigations of high-rate NaCrO2 cathodes towards wide-temperature-tolerant pouch-type Na-ion batteries from -15 to 55 °C: nanowires vs. bulk.J Mater Chem A2019;7:11915-27

[14]

Liang L,Denis DK.Ultralong layered NaCrO2 nanowires: a competitive wide-temperature-operating cathode for extraordinary high-rate sodium-ion batteries.ACS Appl Mater Interfaces2019;11:4037-46

[15]

Wang Y,Zhu W.Enhancing the electrochemical performance of an O3-NaCrO2 cathode in sodium-ion batteries by cation substitution.J Power Sources2019;435:226760

[16]

Li Y,Liu B,Liang X.Heteroatom doping: an effective way to boost sodium ion storage.Adv Energy Mater2020;10:2000927

[17]

Li XL,Li YF.Boosting reversibility of Mn-based tunnel-structured cathode materials for sodium-ion batteries by magnesium substitution.Adv Sci2021;8:2004448 PMCID:PMC8097362

[18]

Xi K,Zhang X.A high-performance layered Cr-based cathode for sodium-ion batteries.Nano Energy2020;67:104215

[19]

Li W,Hu G.Ti-doped NaCrO2 as cathode materials for sodium-ion batteries with excellent long cycle life.J Alloys Compd2019;779:147-55

[20]

Lee I,Lee S.Cationic and transition metal co-substitution strategy of O3-type NaCrO2 cathode for high-energy sodium-ion batteries.Energy Stor Mater2021;41:183-95

[21]

Xu H,Yao W,Tang Y.Mainstream optimization strategies for cathode materials of sodium-ion batteries.Small Struct2022;3:2100217

[22]

Ko W,Kang J.Exceptionally increased reversible capacity of O3-type NaCrO2 cathode by preventing irreversible phase transition.Energy Stor Mater2022;46:289-99

[23]

Ma C,Yue X,Luo R.Suppressing O3-O’3 phase transition in NaCrO2 cathode enabling high rate capability for sodium-ion batteries by Sb substitution.Chem Eng J2022;432:134305

[24]

Wang Y,Qian Y,Zhou H.New insights into improving rate performance of lithium-rich cathode material.Adv Mater2015;27:3915-20

[25]

Liu Y,Ling M,Wang L.Revealing lithium configuration in aged layered oxides for effective regeneration.ACS Appl Mater Interfaces2023;15:9465-74

[26]

Biasi L, Kondrakov AO, Geßwein H, Brezesinski T, Hartmann P, Janek J. Between scylla and charybdis: balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries.J Phys Chem C2017;121:26163-71

[27]

Zhao C,Wang Q.Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes.J Am Chem Soc2020;142:5742-50

[28]

Zhai Y,Ning D.Improving the cycling and air-storage stability of LiNi0.8Co0.1Mn0.1O2 through integrated surface/interface/doping engineering.J Mater Chem A2020;8:5234-45

[29]

Feng J,Qian L.Properties of the “Z”-phase in Mn-rich P2-Na0.67Ni0.1Mn0.8Fe0.1O2 as sodium-ion-battery cathodes.Small2023;19:e2208005

[30]

Wang H,Zhang S.High-entropy Na-deficient layered oxides for sodium-ion batteries.ACS Nano2023;17:12530-43

[31]

Wang PF,Zuo TT.An abnormal 3.7 volt O3-type sodium-ion battery cathode.Angew Chem Int Ed2018;57:8178-83

[32]

Sathiya M,Doublet M,Hadermann J.A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes.Adv Energy Mater2018;8:1702599

[33]

Chu S,Choi G.Revealing the origin of transition-metal migration in layered sodium-ion battery cathodes: random Na extraction and Na-free layer formation.Angew Chem Int Ed2023;62:e202216174

[34]

Wang PF,Yin YX.Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries.Angew Chem Int Ed2016;55:7445-9

[35]

Zhou Y,Nam K.Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy.J Mater Chem A2013;1:11130

[36]

Ma Q,Zhong S.Na-substitution induced oxygen vacancy achieving high transition metal capacity in commercial Li-rich cathode.Nano Energy2021;81:105622

[37]

Guo W,Zhang Y.A universal strategy toward the precise regulation of initial coulombic efficiency of Li-rich Mn-based cathode materials.Adv Mater2021;33:e2103173

[38]

Lin C,Liang M.Facilitating reversible transition metal migration and expediting ion diffusivity via oxygen vacancies for high performance O3-type sodium layered oxide cathodes.J Mater Chem A2022;11:68-76

[39]

Wang W,Wang Y.Boosting methanol-mediated CO2 hydrogenation into aromatics by synergistically tailoring oxygen vacancy and acid site properties of multifunctional catalyst.Chemistry2023;29:e202301135

[40]

Cui SL,Wu XW.Understanding the structure-performance relationship of lithium-rich cathode materials from an oxygen-vacancy perspective.ACS Appl Mater Interfaces2020;12:47655-66

[41]

Carey JJ,Nolan M.Low valence cation doping of bulk Cr2O3: charge compensation and oxygen vacancy formation.J Phys Chem C2016;120:19160-74

[42]

Moltved KA.The chemical bond between transition metals and oxygen: electronegativity, d-orbital effects, and oxophilicity as descriptors of metal-oxygen interactions.J Phys Chem C2019;123:18432-44

[43]

Li H,Xu S.Universal design strategy for air-stable layered Na-ion cathodes toward sustainable energy storage.Adv Mater2024;36:e2403073

[44]

Hou P,Tian Y.A new high-valence cation pillar within the Li layer of compositionally optimized Ni-rich LiNi0.9Co0.1O2 with improved structural stability for Li-ion battery.J Colloid Interface Sci2024;653:129-36

[45]

Wang Y,Cui P.Pillar-beam structures prevent layered cathode materials from destructive phase transitions.Nat Commun2021;12:13 PMCID:PMC7782780

[46]

Wang S,Zhu TY.In situ-formed Cr2O3 Coating on NaCrO2 with improved sodium storage performance.ACS Appl Mater Interfaces2020;12:44671-8

[47]

Wang Y,Hu G.Electrochemical performance of large-grained NaCrO2 cathode materials for Na-ion batteries synthesized by decomposition of Na2Cr2O7·2H2O.Chem Mater2019;31:5214-23

[48]

Konarov A,Bakenov Z.Revisit of layered sodium manganese oxides: achievement of high energy by Ni incorporation.J Mater Chem A2018;6:8558-67

[49]

Luo K,Hao R.Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen.Nat Chem2016;8:684-91

[50]

Ding F,Xiao D.Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability.J Am Chem Soc2022;144:8286-95

[51]

Liu T,Li L.Origin of structural degradation in Li-rich layered oxide cathode.Nature2022;606:305-12

PDF

228

Accesses

0

Citation

Detail

Sections
Recommended

/