Boosting the ionic conductivity of amorphous oxychloride solid electrolytes via different degrees of amorphization

Junquan Ou , Ishani Senevirathna , Vignyatha Tatagari , Adil Saleem , Carlo Segre , Leon Shaw

Energy Materials ›› 2025, Vol. 5 ›› Issue (8) : 500088

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (8) :500088 DOI: 10.20517/energymater.2024.277
Article

Boosting the ionic conductivity of amorphous oxychloride solid electrolytes via different degrees of amorphization

Author information +
History +
PDF

Abstract

Solid electrolytes provide improved safety, greater electrochemical and thermal stability, and better compatibility with high-energy materials than liquid electrolytes. Compared to crystalline solid electrolytes, amorphous solid electrolytes offer reduced grain boundary resistance, enhanced processability, isotropic ionic conductivity and superior mechanical properties. Herein, the impacts of varying high-energy ball milling intensities on the degree of amorphization of amorphous 1.6Li2O-TaCl5 oxychloride and thus its ionic conductivity are investigated. It is shown that the ionic conductivity of amorphous 1.6Li2O-TaCl5 can reach as high as 8.30 × 10-3 S/cm at room temperature by increasing the degree of amorphization. Furthermore, the sample exhibiting the highest ionic conductivity also releases the largest stored enthalpy upon heating, indicating that structural defects in amorphous 1.6Li2O-TaCl5 materials play a crucial role in enhancing their Li-ion conductivities. This discovery opens the door for boosting the ionic conductivities of other amorphous electrolytes in the future by increasing the degree of amorphization.

Keywords

Solid electrolyte / Li-ion batteries / solid-state batteries / Li-ion conductivity / amorphous phase

Cite this article

Download citation ▾
Junquan Ou, Ishani Senevirathna, Vignyatha Tatagari, Adil Saleem, Carlo Segre, Leon Shaw. Boosting the ionic conductivity of amorphous oxychloride solid electrolytes via different degrees of amorphization. Energy Materials, 2025, 5(8): 500088 DOI:10.20517/energymater.2024.277

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kong L,Jiang J.Li-ion battery fire hazards and safety strategies.Energies2018;11:2191

[2]

Schnell J,Knoche T.All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production.J Power Sources2018;382:160-75

[3]

Zhou L,Zhang Q,Nazar LF.New family of argyrodite thioantimonate lithium superionic conductors.J Am Chem Soc2019;141:19002-13

[4]

Adeli P,Park KH.Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution.Angew Chem Int Ed2019;58:8681-6

[5]

Kamaya N,Yamakawa Y.A lithium superionic conductor.Nat Mater2011;10:682-6

[6]

Kato Y,Saito T.High-power all-solid-state batteries using sulfide superionic conductors.Nat Energy2016;1:16030

[7]

Sun Y,Liu Y,Li S.Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery.Crit Rev Solid State Mater Sci2019;44:265-82

[8]

Lu J.Perovskite-type Li-ion solid electrolytes: a review.J Mater Sci Mater Electron2021;32:9736-54

[9]

Tao B,Li H.Thio-/LISICON and LGPS-type solid electrolytes for all-solid-state lithium-ion batteries.Adv Funct Mater2022;32:2203551

[10]

Kobayashi T,Kanno R.Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON.Electrochim Acta2008;53:5045-50

[11]

Li X,Chen N.Water-mediated synthesis of a superionic halide solid electrolyte.Angew Chem2019;131:16579-84

[12]

Zhou L,Shyamsunder A,Wu X.A new halospinel superionic conductor for high-voltage all solid state lithium batteries.Energy Environ Sci2020;13:2056-63

[13]

Liu X,Sun C.A cost-effective Ca-doped Li2ZrCl6 halide solid electrolyte for all-solid-state lithium batteries.Chem Commun2025;61:1144-7

[14]

Braga MH,Stockhausen V,El-azab A.Novel Li3ClO based glasses with superionic properties for lithium batteries.J Mater Chem A2014;2:5470-80

[15]

Ou J,Senevirathna I.On the formation and properties of amorphous and crystalline Li3-yBay/2OCl electrolytes.J Power Sources2024;609:234685

[16]

Tanaka Y,Mizuno K,Asano T.New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS cm-1 for all-solid-state batteries.Angew Chem Int Ed2023;62:e202217581

[17]

Bates J,Gruzalski G.Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries.J Power Sources1993;43:103-10

[18]

Zou Z,Lin Z,Zhang C.Lithium phosphorous oxynitride as an advanced solid-state electrolyte to boost high-energy lithium metal battery.Adv Funct Mater2024;34:2409330

[19]

Yin L,Kong L,Zhao Y.Engineering Frenkel defects of anti-perovskite solid-state electrolytes and their applications in all-solid-state lithium-ion batteries.Chem Commun2020;56:1251-4

[20]

Majeed MK,Hussain G.Interfacial engineering of polymer solid-state lithium battery electrolytes and Li-metal anode: current status and future directions.Small2024;20:2406357

[21]

Saleem A,Majeed MK.Boosting lithium-ion conductivity of polymer electrolyte by selective introduction of covalent organic frameworks for safe lithium metal batteries.Nano Energy2024;128:109848

[22]

Shi K,Zheng D,Zhang W.Rational design of continuous and short-range lithium ion pathways based on polydopamine-anchored metal-organic frameworks for all-solid-state electrolytes.J Energy Chem2024;99:712-24

[23]

Tan J,Cui J.Sandwich-type composited solid polymer electrolytes to strengthen the interfacial ionic transportation and bulk conductivity for all-solid-state lithium batteries from room temperature to 120 °C.J Energy Chem2024;95:288-95

[24]

Dai T,Lu Y.Inorganic glass electrolytes with polymer-like viscoelasticity.Nat Energy2023;8:1221-8

[25]

Hayashi A,Morimoto H,Minami T.Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling.J Am Ceram Soc2001;84:477-79

[26]

Agostini M,Yamada T,Hassoun J.A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte.Solid State Ionics2013;244:48-51

[27]

Wang Y,Yuan H.Impact of local amorphous environment on the diffusion of sodium ions at the solid electrolyte interface in sodium-ion batteries.Chin Chem Lett2024:110412

[28]

Ding J,Yue Y.Amorphous materials for lithium-ion and post-lithium-ion batteries.Small2024;20:2304270

[29]

Ishiguro Y,Nishimura S,Igarashib Y.TaCl5-glassified ultrafast lithium ion-conductive halide electrolytes for high-performance all-solid-state lithium batteries.Chem Lett2023;52:237-41

[30]

Li F,Lu G.Amorphous chloride solid electrolytes with high Li-ion conductivity for stable cycling of all-solid-state high-nickel cathodes.J Am Chem Soc2023;145:27774-87

[31]

Zhang S,Chen J.A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries.Nat Commun2023;14:3780 PMCID:PMC10290651

[32]

Dinnebier RE. Powder diffraction: theory and practice, Royal society of chemistry: 2015. https://books.google.com/books?id=wmQ_lFIMkFYC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (accessed 2025-04-22).

[33]

Luo M,Shaw LL.Unraveling processing-structure-electrical conductivity relationships of NaCrO2 cathodes for Na-ion batteries.J Electrochem Soc2019;166:A3546

[34]

Schwarz RB.Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics.Appl Phys Lett1986;49:146-8

[35]

Davis RM,Koch CC.Mechanical alloying of brittle materials.Metall Trans A1988;19:2867-74

[36]

Shaw LL,Ren R.Mechanically enhanced reactivity of silicon for the formation of silicon nitride composites.J Am Ceram Soc1998;81:760-4

[37]

Benjamin JS.The mechanism of mechanical alloying.Metall Trans1974;5:1929-34

[38]

Schaffer GB.On the kinetics of mechanical alloying.Metall Trans A1992;23:1285-90

[39]

Ren R,Shaw L.Polymorphic transformation and powder characteristics of TiO2 during high energy milling.J Mater Sci2000;35:6015-26.

[40]

Yang Z.Synthesis of nanocrystalline SiC at ambient temperature through high energy reaction milling.Nanostruct Mater1996;7:873-86

[41]

Jolley AG,Hitz GT.Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12.Ionics2015;21:3031-8

[42]

Chiang S,Shaw LL.High ionic conducting NaSICON enabled by mechanical activation enhanced reaction.Mater Chem Phys2024;312:128656

[43]

Shaw L,Ren R.NMR studies on mixing of insoluble constituents during high energy milling.Scr Mater1998;39:1169-75

PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

/