Recent progress on metal-organic framework-based separators for quasi-solid-state lithium metal batteries

Minh Hai Nguyen , Caofeng Niu , Nhat Minh Ngo , Jingwei Chen , Sangbaek Park

Energy Materials ›› 2025, Vol. 5 ›› Issue (8) : 500093

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (8) :500093 DOI: 10.20517/energymater.2024.269
Review

Recent progress on metal-organic framework-based separators for quasi-solid-state lithium metal batteries

Author information +
History +
PDF

Abstract

Although lithium-ion batteries are emerging as one of the leading energy storage technologies due to their high energy density, high specific capacity, and fast charging speed, major challenges remain regarding the use of liquid electrolytes. These electrolytes directly affect the safety and durability of the batteries. While alternative materials such as rigid solid-state electrolytes have been developed to improve safety, they often suffer from poor ionic conductivity and inadequate interfacial contact with the electrodes. These issues hinder the production and widespread application of lithium-ion batteries. To overcome these disadvantages, quasi-solid-state electrolytes, which include both liquid and solid components, have been extensively researched. Among these, metal-organic frameworks (MOFs) with diverse morphological designs and porous structures are considered promising materials for the fabrication of high-performance quasi-solid-state electrolytes. This review summarizes recent research on MOF-based separators for lithium metal batteries, including native MOFs, MOF composites, and MOF derivatives. The fabrication processes and mechanisms for enhancing the electrochemical performance of each separator material are discussed. Furthermore, the prospects of this promising material for lithium metal batteries are provided.

Keywords

Quasi-solid-state electrolyte / metal-organic frameworks / Li-metal batteries / thermal stability / lithium-ion transport

Cite this article

Download citation ▾
Minh Hai Nguyen, Caofeng Niu, Nhat Minh Ngo, Jingwei Chen, Sangbaek Park. Recent progress on metal-organic framework-based separators for quasi-solid-state lithium metal batteries. Energy Materials, 2025, 5(8): 500093 DOI:10.20517/energymater.2024.269

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armand M.Building better batteries.Nature2008;451:652-7

[2]

Goodenough JB.The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013;135:1167-76

[3]

Tarascon JM.Issues and challenges facing rechargeable lithium batteries.Nature2001;414:359-67

[4]

Aravindan V,Madhavi S.Lithium-ion conducting electrolyte salts for lithium batteries.Chem Eur J2011;17:14326-46

[5]

Li M,Chen Z,Lu J.New concepts in electrolytes.Chem Rev2020;120:6783-819

[6]

Qian J,Xu W.High rate and stable cycling of lithium metal anode.Nat Commun2015;6:6362 PMCID:PMC4346622

[7]

Chang Z,Deng H,He P.A stable high-voltage lithium-ion battery realized by an in-built water scavenger.Energy Environ Sci2020;13:1197-204

[8]

Jiao S,Cao R.Stable cycling of high-voltage lithium metal batteries in ether electrolytes.Nat Energy2018;3:739-46

[9]

Zheng J,Mei D.Electrolyte additive enabled fast charging and stable cycling lithium metal batteries.Nat Energy2017;2:17012

[10]

Chang Z,Yang H.Beyond the concentrated electrolyte: further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium metal batteries.Energy Environ Sci2020;13:4122-31

[11]

Lu Y,Archer LA.Stable lithium electrodeposition in liquid and nanoporous solid electrolytes.Nat Mater2014;13:961-9

[12]

Wang Z,Wang H.A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery.Adv Mater2018;30:1704436

[13]

Chang Z,Zhu X,Zhou H.A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments.Nat Commun2022;13:1510 PMCID:PMC8938510

[14]

Furukawa H,O’Keeffe M.The chemistry and applications of metal-organic frameworks.Science2013;341:1230444

[15]

Kitagawa S,Noro S.Functional porous coordination polymers.Angew Chem Int Ed2004;43:2334-75

[16]

Cui Y,He H,Chen B.Metal-organic frameworks as platforms for functional materials.Acc Chem Res2016;49:483-93

[17]

Wang L,Feng X,Qi P.Metal-organic frameworks for energy storage: batteries and supercapacitors.Coord Chem Rev2016;307:361-81

[18]

Yaghi OM,Li H.Selective binding and removal of guests in a microporous metal-organic framework.Nature1995;378:703-6

[19]

Vaitsis C,Argirusis C.Metal organic frameworks (MOFs) and ultrasound: a review.Ultrason Sonochem2019;52:106-19

[20]

Lee J,Kim E,Nam KW.Metal-organic frameworks for high-performance cathodes in batteries.iScience2024;27:110211 PMCID:PMC11253523

[21]

Zheng Y,Xue H.Metal-organic frameworks for lithium-sulfur batteries.J Mater Chem A2019;7:3469-91

[22]

Chu Z,Wang C,Wang G.Metal-organic frameworks as separators and electrolytes for lithium-sulfur batteries.J Mater Chem A2021;9:7301-16

[23]

Chae S,Kim K,Cho J.Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries.Joule2017;1:47-60

[24]

Zhou Y,Li Y.Ni-based catalysts derived from a metal-organic framework for selective oxidation of alkanes.Chin J Catal2016;37:955-62

[25]

Eddaoudi M,Li H.Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks.Acc Chem Res2001;34:319-30

[26]

Sun L,Dincă M.Electrically conductive porous metal-organic frameworks.Angew Chem Int Ed2016;55:3566-79

[27]

Xie Z,Yue X.Metal organic frameworks-based cathode materials for advanced Li-S batteries: a comprehensive review.Nano Res2024;17:2592-618

[28]

Ren J,Zhu H.Recent progress on MOF-derived carbon materials for energy storage.Carbon Energy2020;2:176-202

[29]

Babkova T,Le QB.Hybrid electrolyte based on PEO and ionic liquid with in situ produced and dispersed silica for sustainable solid-state battery.Sustainability2024;16:1683

[30]

Yang S,Lin J.Recent progress in quasi/all-solid-state electrolytes for lithium-sulfur batteries.Front Energy Res2022;10:945003

[31]

Reinoso DM,Fernández-Ropero AJ,Várez A.Advancements in quasi-solid-state Li batteries: a rigid hybrid electrolyte using LATP porous ceramic membrane and infiltrated ionic liquid.ACS Appl Energy Mater2024;7:1527-38 PMCID:PMC10900572

[32]

Xin S,Wang S,Yin Y.Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects.ACS Energy Lett2017;2:1385-94

[33]

Zhou D,Tkacheva A,Wang G.Polymer electrolytes for lithium-based batteries: advances and prospects.Chem2019;5:2326-52

[34]

Vineeth S,Sungjemmenla .A quasi-solid state polymer electrolyte for high-rate and long-life sodium-metal batteries.J Energy Storage2023;73:108780

[35]

Xu K.Electrolytes and interphases in Li-ion batteries and beyond.Chem Rev2014;114:11503-618

[36]

Nitta N,Lee JT.Li-ion battery materials: present and future.Mater Today2015;18:252-64

[37]

Zhang X,Chen X,Zhang Q.Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries.Adv Funct Mater2017;27:1605989

[38]

Manthiram A.A reflection on lithium-ion battery cathode chemistry.Nat Commun2020;11:1550 PMCID:PMC7096394

[39]

Goodenough JB.Challenges for rechargeable Li batteries.Chem Mater2010;22:587-603

[40]

Zhang H,Judez X,Rodriguez-Martínez LM.Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives.Angew Chem Int Ed2018;57:15002-27

[41]

Cheng XB,Zhao CZ.Toward safe lithium metal anode in rechargeable batteries: a review.Chem Rev2017;117:10403-73

[42]

Lin D,Cui Y.Reviving the lithium metal anode for high-energy batteries.Nat Nanotechnol2017;12:194-206

[43]

Lingappan N,Passerini S.A comprehensive review of separator membranes in lithium-ion batteries.Renew Sustain Energy Rev2023;187:113726

[44]

Valverde A,Silva MM.Metal-organic framework based PVDF separators for high rate cycling lithium-ion batteries.ACS Appl Energy Mater2020;3:11907-19

[45]

Zhao R,Zou R.Metal-organic frameworks for batteries.Joule2018;2:2235-59

[46]

Wang H.Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.Chem Soc Rev2013;42:3088-113

[47]

Li D,Chen B.Advanced current collector materials for high-performance lithium metal anodes.Small2022;18:2200010

[48]

Zhao E,Hu A.Rational design of an in-build quasi-solid-state electrolyte for high-performance lithium-ion batteries with the silicon-based anode.Chem Eng J2023;463:142306

[49]

Fang L,Hou W,Wang Z.Quasi-solid-state polymer electrolyte based on highly concentrated LiTFSI complexing DMF for ambient-temperature rechargeable lithium batteries.Ind Eng Chem Res2022;61:7971-81

[50]

Wang P,Lv Z.Light-driven polymer-based all-solid-state lithium-sulfur battery operating at room temperature.Adv Funct Mater2023;33:2211074

[51]

Manthiram A,Wang S.Lithium battery chemistries enabled by solid-state electrolytes.Nat Rev Mater2017;2:16103

[52]

Dunn B,Tarascon JM.Electrical energy storage for the grid: a battery of choices.Science2011;334:928-35

[53]

Yao X,Han F.High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes.Adv Energy Mater2017;7:1602923

[54]

Xiao Q,Wang X.Carbon-based flexible self-supporting cathode for lithium-sulfur batteries: progress and perspective.Carbon Energy2021;3:271-302

[55]

Zhai Y,Zeng Z.Composite hybrid quasi-solid electrolyte for high-energy lithium metal batteries.ACS Appl Energy Mater2021;4:7973-82

[56]

Li Z,Fu J.Nonflammable quasi-solid electrolyte for energy-dense and long-cycling lithium metal batteries with high-voltage Ni-rich layered cathodes.Energy Storage Mater2022;47:542-50

[57]

Utpalla P,Pujari PK.High ionic conductivity and ion conduction mechanism in ZIF-8 based quasi-solid-state electrolytes: a positron annihilation and broadband dielectric spectroscopy study.Phys Chem Chem Phys2022;24:24999-5009

[58]

Zhang W,Zhang Y,Liu J.A quasi-solid-state electrolyte with high ionic conductivity for stable lithium-ion batteries.Sci China Technol Sci2022;65:2369-79

[59]

Yang X,Tian Y.Electrolyte design principles for developing quasi-solid-state rechargeable halide-ion batteries.Nat Commun2023;14:925 PMCID:PMC9938900

[60]

Chen Z,Kim J.Highly stable quasi-solid-state lithium metal batteries: reinforced Li1.3Al0.3Ti1.7(PO4)3/Li interface by a protection interlayer.Adv Energy Mater2021;11:2101339

[61]

Tian R,Zhai M.Design advanced lithium metal anode materials in high energy density lithium batteries.Heliyon2024;10:e27181 PMCID:PMC10915576

[62]

Angarita-Gomez S.Insights into lithium ion deposition on lithium metal surfaces.Phys Chem Chem Phys2020;22:21369-82

[63]

Zinth V,Hofmann M.Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction.J Power Sources2014;271:152-9

[64]

Koralalage MK,Arnold WR.Functionalization of cathode-electrolyte interface with ionic liquids for high-performance quasi-solid-state lithium-sulfur batteries: a low-sulfur loading study.Batteries2024;10:155

[65]

Liang S,Wu X.Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance.Solid State Ionics2018;318:2-18

[66]

Li W,Liu J.Systematic safety evaluation of quasi-solid-state lithium batteries: a case study.Energy Environ Sci2023;16:5444-53

[67]

Liu X,Li H.Flame-retarding quasi-solid polymer electrolytes for high-safety lithium metal batteries.Energy Storage Mater2024;67:103263

[68]

Lim D,Kim H.Safety enhanced quasi-solid-state electrolyte based on thiol-ene click chemistry for rechargeable lithium ion batteries.Meet Abstr2021;MA2021-01:133

[69]

Lin L,Zhang Y.Adjustable mixed conductive interphase for dendrite-free lithium metal batteries.ACS Nano2022;16:13101-10

[70]

Lu X,Xu X,Wu T.Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries - review.Adv Energy Mater2023;13:2301746

[71]

Hu H,Ji X.Confining ionic liquids in developing quasi-solid-state electrolytes for lithium metal batteries.Chem Eur J2024;30:e202302826

[72]

Yu D,McCloskey BD.Lithium-ion transport and exchange between phases in a concentrated liquid electrolyte containing lithium-ion-conducting inorganic particles.ACS Energy Lett2024;9:1717-24 PMCID:PMC11019636

[73]

Zhao Y,Li X.Metal organic frameworks for energy storage and conversion.Energy Storage Mater2016;2:35-62

[74]

Pan K,Qian W.A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries.Adv Mater2020;32:2000399

[75]

Bao H,Liao B,Liu R.Enhanced ionic conduction in metal-organic-framework-based quasi-solid-state electrolytes: mechanistic insights.Energy Fuels2024;38:11275-83

[76]

Kim T,Ono LK,Qi Y.A solid-liquid hybrid electrolyte for lithium ion batteries enabled by a single-body polymer/indium tin oxide architecture.J Phys D: Appl Phys2021;54:475501

[77]

Wu Z,Hai F.A metal-organic framework based quasi-solid-state electrolyte enabling continuous ion transport for high-safety and high-energy-density lithium metal batteries.ACS Appl Mater Interfaces2023;15:22065-74

[78]

Han D,Wang W.Metal organic framework optimized hybrid solid polymer electrolytes with a high lithium-ion transference number and excellent electrochemical stability.Sustain Energy Fuels2022;6:4528-38

[79]

Dong P,Hiscox W.Toward high-performance metal-organic-framework-based quasi-solid-state electrolytes: tunable structures and electrochemical properties.Adv Mater2023;35:e2211841

[80]

Li J,Qin Z.Recent advances in multifunctional metal-organic frameworks for lithium metal batteries.Sci China Chem2024;67:759-73

[81]

Liu W,Weng Z,Wu Z.Functional metal-organic framework boosting lithium metal anode performance via chemical interactions.Chem Sci2017;8:4285-91

[82]

Zhang Q,Li Q.Design of thiol-lithium ion interaction in metal-organic framework for high-performance quasi-solid lithium metal batteries.Dalton Trans2021;50:2928-35

[83]

Yang H.Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: a review.Energy Sci Eng2022;10:1643-71

[84]

Li J,Zhang L,Lassi U.Recent applications of ionic liquids in quasi-solid-state lithium metal batteries.Green Chem Eng2021;2:253-65

[85]

Luo B,Ji W.Suppressing lithium dendrite via hybrid interface layers for high performance quasi-solid-state lithium metal batteries.Chem Eng J2024;492:152152

[86]

Zheng B,Wang H.Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer.ACS Appl Mater Interfaces2018;10:25473-82

[87]

Wang W,Lin R.Amorphous MOFs for next generation supercapacitors and batteries.Energy Adv2023;2:1591-603

[88]

Duan S,Zheng Y.Mechanisms of the accelerated Li+ conduction in MOF-based solid-state polymer electrolytes for all-solid-state lithium metal batteries.Adv Mater2024;36:2314120

[89]

Loo KL,Chung C,Yoo PJ.Ion-transporting channel-embedded MOF-in-COF structures as composite quasi-solid electrolytes with highly enhanced electrochemical properties.J Mater Chem A2024;12:7875-85

[90]

Zhang Z,Zhang H.Hexagonal rodlike Cu-MOF-74-derived filler-reinforced composite polymer electrolyte for high-performance solid-state lithium batteries.ACS Appl Energy Mater2022;5:1095-105

[91]

Miner EM.Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries.Phil Trans R Soc A2019;377:20180225 PMCID:PMC6562342

[92]

Hong CN,Feldblyum JI.Metal-organic frameworks for fast electrochemical energy storage: mechanisms and opportunities.Chem2023;9:798-822

[93]

Sun R,Chen Z.Engineering strategies of metal-organic frameworks toward advanced batteries.Battery Energy2023;2:20220064

[94]

Yu J,Cheng L,Zhao L.Engineering the interfacial compatibility of a small-molecule quinone cathode toward stable quasi-solid-state lithium-organic batteries.ACS Sustainable Chem Eng2024;12:9969-77

[95]

Kim M,Song H.Interfacially-enhanced quasi-solid electrolyte using ionic liquid for lithium-ion battery.Mater Res Bull2024;170:112588

[96]

Eftekhari A.Lithium batteries for electric vehicles: from economy to research strategy.ACS Sustainable Chem Eng2019;7:5602-13

[97]

Zhang Q,Wang J.The optimized interfacial compatibility of metal-organic frameworks enables a high-performance quasi-solid metal battery.ACS Energy Lett2020;5:2919-26

[98]

Wei Y,Li Y.Constructing stable anodic interphase for quasi-solid-state lithium-sulfur batteries.ACS Appl Mater Interfaces2020;12:39335-41

[99]

Brus J,Urbanova M,Plecháček T.Transferring lithium ions in the nanochannels of flexible metal-organic frameworks featuring superchaotropic metallacarborane guests: mechanism of ionic conductivity at atomic resolution.ACS Appl Mater Interfaces2020;12:47447-56

[100]

Giacobbe C,Maspero A.Elucidating the CO2 adsorption mechanisms in the triangular channels of the bis(pyrazolate) MOF Fe2(BPEB)3 by in situ synchrotron X-ray diffraction and molecular dynamics simulations.J Mater Chem A2017;5:16964-75

[101]

Hou T,Wang J.Correction: the solvation structure, transport properties and reduction behavior of carbonate-based electrolytes of lithium-ion batteries.Chem Sci2022;13:8205 PMCID:PMC9278417

[102]

Xu W,Diercks CS,Ji Z.A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte.J Am Chem Soc2019;141:17522-6

[103]

Hou T,Pei X,Yaghi OM.Ionic conduction mechanism and design of metal-organic framework based quasi-solid-state electrolytes.J Am Chem Soc2022;144:13446-50 PMCID:PMC9377385

[104]

Su NC,Roslee MF,Ahmad A.Potential complexes of NaCF3SO3-tetraethylene dimethyl glycol ether (tetraglyme)-based electrolytes for sodium rechargeable battery application.Ionics2019;25:541-9

[105]

Singh HP,Sekhon SS.Correlation between ionic conductivity and fluidity of polymer gel electrolytes containing NH4CF3SO3.Bull Mater Sci2005;28:467-72

[106]

Castillo J,Judez X.High energy density lithium-sulfur batteries based on carbonaceous two-dimensional additive cathodes.ACS Appl Energy Mater2023;6:3579-89

[107]

Kwon WJ,Jung K.Enhanced Li+ conduction in perovskite Li3xLa/3-x1/3-2xTiO3 solid-electrolytes via microstructural engineering.J Mater Chem A2017;5:6257-62

[108]

Zhu Y,Mo Y.First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries.J Mater Chem A2016;4:3253-66

[109]

Luo W,Zhu Y.Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer.Adv Mater2017;29

[110]

Chen L,Li S,Nan C.PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”.Nano Energy2018;46:176-84

[111]

Wan J,Kong X.Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries.Nat Nanotechnol2019;14:705-11

[112]

Song K.An effective solid-electrolyte interphase for stable solid-state batteries.Chem2021;7:3195-7

[113]

Zhou W,Li Y,Manthiram A.Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte.J Am Chem Soc2016;138:9385-8

[114]

Kim SY,Kostecki R.Composite cathode design for high-energy all-solid-state lithium batteries with long cycle life.ACS Energy Lett2023;8:521-8

[115]

Zhou B,Stosevski I,Wilkinson DP.Li host carbon materials as the negative electrode for a Li-metal battery - mechanistic and practical assessment.Meet Abstr2022;MA2022-01:667

[116]

Zheng Z,Guo Z.Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries.Energy Environ Sci2021;14:1835-53

[117]

Chen Y,Chen T,Armand M.Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces.Energy Storage Mater2020;31:401-33

[118]

Chen S,Fan J,Golberg D.Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes.J Mater Chem A2018;6:11631-63

[119]

Chen R,Guo X,Wu F.The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons.Mater Horiz2016;3:487-516

[120]

Ong JL,Teng SY.Future paradigm of 3D printed Ni-based metal organic framework catalysts for dry methane reforming: techno-economic and environmental analyses.ACS Omega2022;7:15369-84 PMCID:PMC9096962

[121]

Desantis D,James BD,Long JR.Techno-economic analysis of metal-organic frameworks for hydrogen and natural gas storage.Energy Fuels2017;31:2024-32

[122]

Paul T,Alqerem R,Arafat HA.Scale-up of metal-organic frameworks production: engineering strategies and prospects towards sustainable manufacturing.J Environ Chem Eng2023;11:111112

[123]

Chakraborty D,Mouchaham G,Serre C.Large-scale production of metal-organic frameworks.Adv Funct Mater2024;34:2309089

[124]

Yusuf VF,Kailasa SK.Review on metal-organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatment.ACS Omega2022;7:44507-31 PMCID:PMC9753116

[125]

Sun C,Gong Y,Zhang J.Recent advances in all-solid-state rechargeable lithium batteries.Nano Energy2017;33:363-86

[126]

Han X,Fu KK.Negating interfacial impedance in garnet-based solid-state Li metal batteries.Nat Mater2017;16:572-9

[127]

Wang C,Kammampata SP.Garnet-type solid-state electrolytes: materials, interfaces, and batteries.Chem Rev2020;120:4257-300

[128]

Kaur G,Singh MD,Sivasubramanian SC.Ionic liquid composites with garnet-type Li6.75Al0.25La3Zr2O12: stability, electrical transport, and potential for energy storage applications.Mater Chem Phys2024;317:129205

[129]

Zhang Z,Liu Y.Interface-engineered Li7La3Zr2O12-based garnet solid electrolytes with suppressed li-dendrite formation and enhanced electrochemical performance.ChemSusChem2018;11:3774-82

[130]

Lin R,Li Y,Xiong Y.Recent advances in ionic liquids-MOF hybrid electrolytes for solid-state electrolyte of lithium battery.Batteries2023;9:314

[131]

Subramani R,Chuang Y,Lu K.Fe-MIL-101 metal organic framework integrated solid polymer electrolytes for high-performance solid-state lithium metal batteries.J Mater Chem A2024;12:7132-41

[132]

Homann G,Nair J,Winter M.Poly(ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: evaluating the role of electrolyte oxidation in rapid cell failure.Sci Rep2020;10:4390 PMCID:PMC7062893

[133]

Wang Q,Ma J,Geng S.Constructing PTFE@LATP composite solid electrolytes with three-dimensional network for high-performance lithium batteries.Electrochim Acta2023;467:143138

[134]

Liu Y,Zhang Y,Sun X.Thin Li1.3Al0.3Ti1.7(PO4)3-based composite solid electrolyte with a reinforced interface of in situ formed poly(1,3-dioxolane) for lithium metal batteries.J Colloid Interface Sci2023;644:53-63

[135]

Xu Y,Gao L.A fiber-reinforced solid polymer electrolyte by in situ polymerization for stable lithium metal batteries.Nano Res2023;16:9259-66

[136]

Butreddy P,Laws S,Mo Y.Insight into the isoreticularity of Li-MOFs for the design of low-density solid and quasi-solid electrolytes.Chem Mater2023;35:9857-78 PMCID:PMC10720344

[137]

Gong X,Li Q.Cross-linked electrospun gel polymer electrolytes for lithium-ion batteries.Chin J Polym Sci2024;42:1021-8

[138]

Lim N,Park J.Design of a bioinspired robust three-dimensional cross-linked polymer binder for high-performance Li-ion battery applications.ACS Appl Mater Interfaces2023;15:54409-18

[139]

Shin W,Kannan AG,Kim D.Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries.Sci Rep2016;6:BFsrep26332 PMCID:PMC4870681

[140]

Röchow ET,Pospiech D.In situ preparation of crosslinked polymer electrolytes for lithium ion batteries: a comparison of monomer systems.Polymers2020;12:1707 PMCID:PMC7466031

[141]

Wen J,Jiang X.Graphene oxide enabled flexible peo-based solid polymer electrolyte for all-solid-state lithium metal battery.ACS Appl Energy Mater2021;4:3660-9

[142]

Rajamani A,Murugan R.Electrospun derived polymer-garnet composite quasi solid state electrolyte with low interface resistance for lithium metal batteries.Energy2023;263:126058

[143]

Huang Y,Fu Y.A thermoregulating separator based on black phosphorus/MOFs heterostructure for thermo-stable lithium-sulfur batteries.Chem Eng J2023;454:140250

[144]

Lei H,Li S.MOF-based quasi-solid-state electrolyte for long-life Al-Se battery.J Energy Chem2023;86:237-45

[145]

Zhang Z,Li C.Metal-organic framework-supported poly(ethylene oxide) composite gel polymer electrolytes for high-performance lithium/sodium metal batteries.ACS Appl Mater Interfaces2021;13:37262-72

[146]

Li J,Pan F.Engineering strategies for suppressing the shuttle effect in lithium-sulfur batteries.Nano-Micro Lett2023;16:12

[147]

Aslam MK,Hussain T.How to avoid dendrite formation in metal batteries: innovative strategies for dendrite suppression.Nano Energy2021;86:106142

[148]

Bai S,Kim C.Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries.Nat Nanotechnol2021;16:77-84

[149]

Liu Q,Mei Z.Constructing host-guest recognition electrolytes promotes the Li+ kinetics in solid-state batteries.Energy Environ Sci2024;17:780-90

[150]

Yang L,Park S.Recent progress on metal-organic framework derived carbon and their composites as anode materials for potassium-ion batteries.Energy Mater2023;3:300042

[151]

Chen J,Li L,Chua DHC.Optimization strategies toward functional sodium-ion batteries.Energy Environ Mater2023;6:e12633

[152]

Lu X,Kong D,Shen L.Facilitating lithium-ion conduction in gel polymer electrolyte by metal-organic frameworks.ACS Mater Lett2020;2:1435-41

[153]

Fu X,Ding C,Zhang Q.MOF-enabled ion-regulating gel electrolyte for long-cycling lithium metal batteries under high voltage.Small2022;18:2106225

[154]

Wang D,Yao X.Bio-inspired polydopamine-modified ZIF-90-supported gel polymer electrolyte for high-safety lithium metal batteries.ACS Appl Energy Mater2023;6:11146-56

[155]

Murray LJ,Long JR.Hydrogen storage in metal-organic frameworks.Chem Soc Rev2009;38:1294-314

[156]

Li JR,Zhou HC.Metal-organic frameworks for separations.Chem Rev2012;112:869-932

[157]

Ma L,Lin W.Enantioselective catalysis with homochiral metal-organic frameworks.Chem Soc Rev2009;38:1248-56

[158]

Kreno LE,Farha OK,Van Duyne RP.Metal-organic framework materials as chemical sensors.Chem Rev2012;112:1105-25

[159]

Min KS.Silver(I)-polynitrile network solids for anion exchange:  anion-induced transformation of supramolecular structure in the crystalline state.J Am Chem Soc2000;122:6834-40

[160]

Horike S,Kitagawa S.Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.Acc Chem Res2013;46:2376-84

[161]

Yang H,Bright J.A single-ion conducting UiO-66 metal-organic framework electrolyte for all-solid-state lithium batteries.ACS Appl Energy Mater2020;3:4007-13

[162]

Liu X.Metal-organic framework UiO-66 membranes.Front Chem Sci Eng2020;14:216-32

[163]

Taylor JM,Ikeda R.Defect control to enhance proton conductivity in a metal-organic framework.Chem Mater2015;27:2286-9

[164]

Chen X.Proton conductive Zr-based MOFs.Inorg Chem Front2020;7:3765-84

[165]

Liu L.Flexible quasi-solid-state composite electrolyte membrane derived from a metal-organic framework for lithium-metal batteries.ChemElectroChem2020;7:707-15

[166]

Zhou L,Yin G.Tailoring the function of battery separators via the design of MOF coatings.Adv Funct Mater2024;34:2314246

[167]

Wu X,Bi J.Understanding the structure-dependent adsorption behavior of four zirconium-based porphyrinic MOFs for the removal of pharmaceuticals.Microporous Mesoporous Mater2024;363:112827

[168]

Furukawa H,Zhang YB.Water adsorption in porous metal-organic frameworks and related materials.J Am Chem Soc2014;136:4369-81

[169]

Sun C,Yuan XF.ZIF-8-based quasi-solid-state electrolyte for lithium batteries.ACS Appl Mater Interfaces2019;11:46671-7

[170]

Zhu X,Yang H,Zhou H.Highly safe and stable lithium-metal batteries based on a quasi-solid-state electrolyte.J Mater Chem A2022;10:651-63

[171]

Shieh FK,Leo SY.Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size.Chem Eur J2013;19:11139-42

[172]

Kida K,Fujita K,Miyake Y.Formation of high crystalline ZIF-8 in an aqueous solution.CrystEngComm2013;15:1794-801

[173]

Yu T,Zhang H,Liu Y.Fabrication and characterization of purified esterase-embedded zeolitic imidazolate frameworks for the removal and remediation of herbicide pollution from soil.J Environ Manage2021;288:112450

[174]

Deneff JI,Kotula PG,Sava Gallis DF.Expanding the ZIFs repertoire for biological applications with the targeted synthesis of ZIF-20 nanoparticles.ACS Appl Mater Interfaces2021;13:27295-304

[175]

Xing J,Okada S,Nakamura E.Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses.Nat Commun2019;10:3608 PMCID:PMC6707309

[176]

Xu G,Otsubo K,Kitagawa H.Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm.J Am Chem Soc2012;134:16524-7

[177]

Shen L,Liu F.Creating lithium-ion electrolytes with biomimetic ionic channels in metal-organic frameworks.Adv Mater2018;30:1707476

[178]

Wang XG,Yu Y.Controlled nucleation and controlled growth for size predicable synthesis of nanoscale metal-organic frameworks (MOFs): a general and scalable approach.Angew Chem Int Ed2018;57:7836-40

[179]

Qiu S,Xiao Y,He G.Hierarchical porous HKUST-1 fabricated by microwave-assisted synthesis with CTAB for enhanced adsorptive removal of benzothiophene from fuel.Sep Purif Technol2021;271:118868

[180]

Chen Y,Lv D.Efficient adsorptive separation of C3H6 over C3H8 on flexible and thermoresponsive CPL-1.Chem Eng J2017;328:360-7

[181]

Xiang H,Shang J.Synthesis and modification of moisture-stable coordination pillared-layer metal-organic framework (CPL-MOF) CPL-2 for ethylene/ethane separation.Microporous Mesoporous Mater2020;293:109784

[182]

Garai B,Krause S.Tunable flexibility and porosity of the metal-organic framework DUT-49 through postsynthetic metal exchange.Chem Mater2020;32:889-96

[183]

Kolbe F,Bon V,Kaskel S.High-pressure in situ 129Xe NMR spectroscopy: insights into switching mechanisms of flexible metal-organic frameworks isoreticular to DUT-49.Chem Mater2019;31:6193-201 PMCID:PMC9115758

[184]

Wang C,Yang J.Rapid and HF-free synthesis of MIL-100(Cr) via steam-assisted method.Mater Lett2019;252:286-8

[185]

Celeste A,Itié JP.Mesoporous metal-organic framework MIL-101 at high pressure.J Am Chem Soc2020;142:15012-9

[186]

Hu J,Zhang H.Controlled syntheses of Mg-MOF-74 nanorods for drug delivery.J Solid State Chem2021;294:121853

[187]

Qi C,Wang J.Titanium-containing metal-organic framework modified separator for advanced lithium-sulfur batteries.ACS Sustainable Chem Eng2020;8:12968-75

[188]

Wang Z,Zhang XG.Tailoring multiple sites of metal-organic frameworks for highly efficient and reversible ammonia adsorption.ACS Appl Mater Interfaces2021;13:56025-34

[189]

Su Y,Hu J.Thiosalicylic-acid-mediated coordination structure of nickel center via thermodynamic modulation for aqueous Ni-Zn batteries.Adv Mater2024;36:2406094

[190]

Leng X,Yang M.Bimetallic Ni-Co MOF@PAN modified electrospun separator enhances high-performance lithium-sulfur batteries.J Energy Chem2023;82:484-96

[191]

Razaq R,Småbråten DR.Synergistic effect of bimetallic MOF modified separator for long cycle life lithium-sulfur batteries.Adv Energy Mater2024;14:2302897

[192]

Liu Y,Wen A,Ye H.A Janus MXene/MOF separator for the all-in-one enhancement of lithium-sulfur batteries.Energy Storage Mater2023;55:652-9

[193]

Han DD,Pan GL.Metal-organic-framework-based gel polymer electrolyte with immobilized anions to stabilize a lithium anode for a quasi-solid-state lithium-sulfur battery.ACS Appl Mater Interfaces2019;11:18427-35

[194]

Férey G,Serre C.A chromium terephthalate-based solid with unusually large pore volumes and surface area.Science2005;309:2040-2

[195]

Xu Z,Chen L.Thermally activated bipyridyl-based Mn-MOFs with Lewis acid-base bifunctional sites for highly efficient catalytic cycloaddition of CO2 with epoxides and Knoevenagel condensation reactions.Dalton Trans2023;52:3671-81

[196]

Zhang X,Li Z.Thermal activation of CuBTC MOF for CO oxidation: the effect of activation atmosphere.Catalysts2017;7:106

[197]

He Z,Song Y.Separator functionalization realizing stable zinc anode through microporous metal-organic framework with special functional group.Energy Storage Mater2025;74:103886

[198]

Planchais A,Salles F.A joint experimental/computational exploration of the dynamics of confined water/Zr-based MOFs systems.J Phys Chem C2014;118:14441-8

[199]

Yang P,Liu S.Ionic selective separator design enables long-life zinc-iodine batteries via synergistic anode stabilization and polyiodide shuttle suppression.Adv Funct Mater2024;34:2410712

[200]

Ruan Z,Yuan X.Improved catalytic performance and stability of defected UiO-66-SO3H in the esterification reaction of cyclohexene with cyclohexanecarboxylic acid.J Porous Mater2022;29:1957-68

[201]

Morris W,Demir S.Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks.Inorg Chem2012;51:6443-5

[202]

Kim HK,Kim MB.A chemical route to activation of open metal sites in the copper-based metal-organic framework materials HKUST-1 and Cu-MOF-2.J Am Chem Soc2015;137:10009-15

[203]

Li H,O’keeffe M.Design and synthesis of an exceptionally stable and highly porous metal-organic framework.Nature1999;402:276-9

[204]

Liu J,Natesakhawat S.Experimental and theoretical studies of gas adsorption in Cu3(BTC)2:  an effective activation procedure.J Phys Chem C2007;111:9305-13

[205]

Lohe MR,Kaskel S.Metal-organic framework (MOF) aerogels with high micro- and macroporosity.Chem Commun2009;:6056-8

[206]

Nelson AP,Mulfort KL.Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials.J Am Chem Soc2009;131:458-60

[207]

Mondloch JE,Farha OK.Activation of metal-organic framework materials.CrystEngComm2013;15:9258

[208]

Oh H,Balderas-xicohtencatl R.Efficient synthesis for large-scale production and characterization for hydrogen storage of ligand exchanged MOF-74/174/184-M (M = Mg2+, Ni2+).Int J Hydrogen Energy2017;42:1027-35

[209]

Batten MP,Hadley T.Continuous flow production of metal-organic frameworks.Curr Opin Chem Eng2015;8:55-9

[210]

Rubio-Martinez M,Thornton AW,Maspoch D.New synthetic routes towards MOF production at scale.Chem Soc Rev2017;46:3453-80

[211]

Gaab M,Maurer S,Müller U.The progression of Al-based metal-organic frameworks-from academic research to industrial production and applications.Microporous Mesoporous Mater2012;157:131-6

[212]

Vepsäläinen M,Gong H,Bayatsarmadi B.Electrosynthesis of HKUST-1 with flow-reactor post-processing.Appl Sci2021;11:3340

[213]

Ren J,Musyoka NM,Mathe M.Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs).Coord Chem Rev2017;352:187-219

[214]

Mckinstry C,Cussen EJ,Patwardhan SV.Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals.Chem Eng J2016;285:718-25

[215]

Klimakow M,Thünemann AF,Emmerling F.Mechanochemical synthesis of metal-organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas.Chem Mater2010;22:5216-21

[216]

Tanaka S,Nagaoka T,Miyake Y.Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework.Chem Commun2013;49:7884-6

[217]

Chen Z,Yao J.Toxicity of a molluscicide candidate PPU07 against Oncomelania hupensis (Gredler, 1881) and local fish in field evaluation.Chemosphere2019;222:56-61

[218]

Cadot S,Luneau D,Alessandra Quadrelli E.A water-based and high space-time yield synthetic route to MOF Ni2(dhtp) and its linker 2,5-dihydroxyterephthalic acid.J Mater Chem A2014;2:17757-63

[219]

Sánchez L,Aguilar-frutis .Improving Mg2+ ionic conductivity in ZIF-8 by Cu (II) doping and mbIm incorporation into the framework.Solid State Ionics2024;407:116497

[220]

Mu AU,Chen Z.Metal-organic frameworks for the enhancement of lithium-based batteries: a mini review on emerging functional designs.Adv Sci2024;11:2305280 PMCID:PMC10787081

[221]

Zhang M,Zhu B.Performance enhancement of lithium-metal batteries using the three-dimensional porous network structure a metal-organic framework-aramid cellulose-MXene composite separator.Int J Hydrogen Energy2024;59:263-71

[222]

Shang W,Han J,Fang C.Dendrite-free Li anode enabled by a metal-organic framework-modified solid polymer electrolyte for high-performance lithium metal batteries.ACS Appl Energy Mater2020;3:12351-9

[223]

Wang Z,Liu Y.Metal-organic frameworks and their derivatives for optimizing lithium metal anodes.eScience2024;4:100189

[224]

Lee DJ,Sikma RE.Holistic design consideration of metal-organic framework-based composite membranes for lithium-sulfur batteries.ACS Appl Mater Interfaces2022;14:34742-9

[225]

Phung J,Deng W.An overview of MOF-based separators for lithium-sulfur batteries.Sustain Mater Technol2022;31:e00374

[226]

Peng Y,Xu J.Metal-organic framework (MOF) composites as promising materials for energy storage applications.Adv Colloid Interface Sci2022;307:102732

[227]

Bai S,Zhu K,Zhou H.Metal-organic framework-based separator for lithium-sulfur batteries.Nat Energy2016;1:16094

[228]

Li YW,Li J.Fe-MOF-derived efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc-air batteries.ACS Appl Mater Interfaces2020;12:44710-9

[229]

He J,Manthiram A.Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries.Energy Environ Sci2018;11:2560-8

[230]

Li X,Zhang M,Zhou X.Chromium-based metal-organic framework coated separator for improving electrochemical performance and safety of lithium-ion battery.J Energy Storage2023;59:106473

[231]

Chang Z,Deng H,He P.A liquid electrolyte with de-solvated lithium ions for lithium-metal battery.Joule2020;4:1776-89

[232]

Sheng L,Liu X.Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator.Nat Commun2022;13:172 PMCID:PMC8748786

[233]

Hu Q,Wang A.Functionalized MOF enables stable cycling of nickel-rich layered oxides for lithium-ion batteries.Chem Eng J2024;497:154608

[234]

Chang Z,Pan A,Zhou H.An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell.Nat Commun2022;13:6788 PMCID:PMC9649724

[235]

Fan Y,Zhang F,Zhao Y.Suppressing the shuttle effect in lithium-sulfur batteries by a UiO-66-modified polypropylene separator.ACS Omega2019;4:10328-35

[236]

Han J,Wang R.Investigation of the mechanism of metal-organic frameworks preventing polysulfide shuttling from the perspective of composition and structure.J Mater Chem A2020;8:6661-9

[237]

Zhu F,Wu X.High-performance metal-organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries.ACS Appl Mater Interfaces2019;11:43206-13

[238]

Fan Z,Li X.Inhibiting I-/I3- redox shuttling in Li-O2 batteries by MOF decorated separator.Mater Res Bull2023;167:112412

[239]

Aubrey ML,Wiers BM.Metal-organic frameworks as solid magnesium electrolytes.Energy Environ Sci2014;7:667-71

[240]

Ameloot R,Wiers BM.Ionic conductivity in the metal-organic framework UiO-66 by dehydration and insertion of lithium tert-butoxide.Chemistry2013;19:5533-6

[241]

Zettl R,Gadermaier B.High Li+ and Na+ conductivity in new hybrid solid electrolytes based on the porous MIL-121 metal organic framework.Adv Energy Mater2021;11:2003542

[242]

Lu G,Shen C.Bifunctional MOF doped PEO composite electrolyte for long-life cycle solid lithium ion battery.ACS Appl Mater Interfaces2022;14:45476-83

[243]

Guo Y,Liang H.Blocking polysulfides and facilitating lithium-ion transport: polystyrene sulfonate@HKUST-1 membrane for lithium-sulfur batteries.ACS Appl Mater Interfaces2018;10:30451-9

[244]

Kim SH,Kim R,Park HS.A functional separator coated with sulfonated metal-organic framework/Nafion hybrids for Li-S batteries.J Mater Chem A2018;6:24971-8

[245]

Chang Z,Wang J,He P.Fabricating better metal-organic frameworks separators for Li-S batteries: pore sizes effects inspired channel modification strategy.Energy Storage Mater2020;25:164-71

[246]

Wang Z,Hua J.An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries.Small Methods2020;4:2000082

[247]

Zhou Z,Fang T.MOF-derived Co3O4 polyhedrons as efficient polysulfides barrier on polyimide separators for high temperature lithium-sulfur batteries.Nanomaterials2019;9:1574

[248]

Suriyakumar S,Angulakshmi N,Alkordi MH.Metal-organic framework@SiO2 as permselective separator for lithium-sulfur batteries.J Mater Chem A2018;6:14623-32

[249]

Bai S,Wu S.A long-life lithium-sulphur battery by integrating zinc-organic framework based separator.J Mater Chem A2016;4:16812-7

[250]

Zhou C,Li Z.A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries.Chem Eng J2020;395:124979

[251]

Huang JQ,Zhang Q,Chen CM.Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries.ACS Nano2015;9:3002-11

[252]

Lammert M,Reinsch H.Synthesis and characterization of new Ce(IV)-MOFs exhibiting various framework topologies.Cryst Growth Des2017;17:1125-31

[253]

Lee DH,Park M,Kim D.Metal-organic framework/carbon nanotube-coated polyethylene separator for improving the cycling performance of lithium-sulfur cells.Electrochim Acta2018;283:1291-9

[254]

Jiang G,Chen X.In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries.Chem Eng J2019;373:1309-18

[255]

Wang B,Mao C.A MOF-gel based separator for suppressing redox mediator shuttling in Li-O2 batteries.Small2024;20:2401231

[256]

Guang Z,Chen C,Xu Z.Engineering a light-weight, thin and dual-functional interlayer as “polysulfides sieve” capable of synergistic adsorption for high-performance lithium-sulfur batteries.Chem Eng J2020;383:123163

[257]

Li B,Luo B.MOF-derived NiCo2S4@C as a separator modification material for high-performance lithium-sulfur batteries.Electrochim Acta2020;344:135811

[258]

Li W,Qian J.Oxygenated nitrogen-doped microporous nanocarbon as a permselective interlayer for ultrastable lithium-sulfur batteries.ChemElectroChem2019;6:1094-100

[259]

Cai J,Chen X.MOF-derived conductive carbon nitrides for separator-modified Li-S batteries and flexible supercapacitors.J Mater Chem A2020;8:1757-66

PDF

194

Accesses

0

Citation

Detail

Sections
Recommended

/