Three-dimensional MXene coupled CoFe nanoalloys as sulfur host for long-life room-temperature sodium-sulfur batteries
Xiaoming Yu , Hao Li , Kuan Liang , Shengdong Liu , Liuqing Li , Ye Zhu , Haitao Huang
Energy Materials ›› 2025, Vol. 5 ›› Issue (8) : 500086
Three-dimensional MXene coupled CoFe nanoalloys as sulfur host for long-life room-temperature sodium-sulfur batteries
Room-temperature sodium-sulfur (RT Na-S) batteries are potential candidates for next-generation energy storage systems because of low-cost resources, high theoretical capacity, and high energy density. However, their commercialization is hindered by the inherent shuttle effect, insulation of sulfur, and slow catalytic conversion. This study proposes a novel approach involving the design of a C/CoFe alloy catalyst coupled with Ti3C2Tx MXene substrate (C/CoFe-MXene) as a three-dimensional porous conductive sulfur host. Polysulfide adsorption/catalytic experiments and density functional theory calculation confirmed the excellent affinity and strong catalytic conversion ability of the C/CoFe-MXene composite for polysulfides. The heterostructure formed between the CoFe alloy and the MXene substrate promotes Na+ transport and accelerates reaction kinetics of sulfur species. Consequently, the assembled RT Na-S batteries with a C/CoFe-MXene sulfur host (2.0 mg cm-2) deliver a high initial specific capacity of 572 mAh g-1 at 1 C. Even at 5 C, the battery achieves ultralong-term cycling over 5,400 cycles with a capacity retention rate of 61.9%, corresponding to a slow capacity fading rate of 0.0089% per cycle, demonstrating outstanding high-rate tolerance. This work provides new insights into the preparation of three-dimensional porous sulfur cathodes with high specific surface area and excellent catalytic activity using catalysts loaded on MXene substrates in RT Na-S batteries.
Ti3C2Tx MXene / CoFe alloy / 3D porous structure / heterostructures / RT Na-S batteries
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Kumar Saroja AP, Xu Y. Carbon materials for Na-S and K-S batteries.Matter2022;5:808-36 |
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
/
| 〈 |
|
〉 |