MOF and related composites as selective functional separators and interlayers for Li-S batteries

Wenqing Lu , Yifan Xu , Claire Dazon , Florence Macaulay , Vanessa Pimenta , Christian Serre

Energy Materials ›› 2025, Vol. 5 ›› Issue (7) : 500075

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (7) :500075 DOI: 10.20517/energymater.2024.260
Review

MOF and related composites as selective functional separators and interlayers for Li-S batteries

Author information +
History +
PDF

Abstract

Lithium-sulfur (Li-S) batteries are one of the most promising technologies compared to lithium-ion-based ones, mainly due to their outstanding high energy density (2,567 Wh/kg). Nonetheless, Li-S batteries still face important drawbacks, namely the shuttle effect caused by the polysulfide dissolution into the electrolyte and their escape from the cathode, leading to active material loss and ultimately to the anode passivation. Mitigating this effect is crucial to boost the Li-S technologies at a large scale and the rational design of the separator or interlayer is considered as an effective solution. Metal-Organic Frameworks and related composites have been recently proposed as candidates to selectively capture the polysulfides, due to their tunable structures and compositions and ordered micro- or meso-porosity which can sieve polysulfides through physical barriers or chemical sorption and catalyze polysulfide conversion kinetics. Moreover, once introduced into composite membranes as functional separators and interlayers, this promotes their easy inclusion in Li-S devices. This short review summarizes the recent progress in this field, emphasizing the different types of functional separators and interlayers integrating Metal-Organic Frameworks, and proposes new research directions to optimize these systems.

Keywords

Lithium-sulfur batteries / metal-organic frameworks / separators / interlayers

Cite this article

Download citation ▾
Wenqing Lu, Yifan Xu, Claire Dazon, Florence Macaulay, Vanessa Pimenta, Christian Serre. MOF and related composites as selective functional separators and interlayers for Li-S batteries. Energy Materials, 2025, 5(7): 500075 DOI:10.20517/energymater.2024.260

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fan E,Wang Z.Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects.Chem Rev2020;120:7020-63

[2]

Bruce PG,Tarascon JM.Nanomaterials for rechargeable lithium batteries.Angew Chem Int Ed2008;47:2930-46

[3]

Shahjalal M,Shams T.A review on second-life of Li-ion batteries: prospects, challenges, and issues.Energy2022;241:122881

[4]

Li H,Chen L.Research on advanced materials for Li-ion batteries.Adv Mater2009;21:4593-607

[5]

Etacheri V,Elazari R,Aurbach D.Challenges in the development of advanced Li-ion batteries: a review.Energy Environ Sci2011;4:3243

[6]

Pope MA.Structural design of cathodes for Li-S batteries.Adv Energy Mater2015;5:1500124

[7]

Larcher D.Towards greener and more sustainable batteries for electrical energy storage.Nat Chem2015;7:19-29

[8]

Choi NS,Freunberger SA.Challenges facing lithium batteries and electrical double-layer capacitors.Angew Chem Int Ed2012;51:9994-10024

[9]

Zhou G,Cui Y.Formulating energy density for designing practical lithium-sulfur batteries.Nat Energy2022;7:312-9

[10]

Benveniste G,Rallo H,Amante B.Comparative life cycle assessment of Li-Sulphur and Li-ion batteries for electric vehicles.Resour Conserv Recycl Adv2022;15:200086

[11]

Benveniste G,Canals Casals L,Amante B.Comparison of the state of lithium-sulphur and lithium-ion batteries applied to electromobility.J Environ Manag2018;226:1-12

[12]

Zhu K,Chi Z.How far away are lithium-sulfur batteries from commercialization?.Front Energy Res2019;7:123

[13]

Huang Y,Zhang C.Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries.Adv Sci2022;9:e2106004 PMCID:PMC9036004

[14]

Wang Z,Ji H,Qian T.Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries.Adv Mater2022;34:e2203699

[15]

Hou LP,Yao N.Weakening the solvating power of solvents to encapsulate lithium polysulfides enables long-cycling lithium-sulfur batteries.Adv Mater2022;34:e2205284

[16]

Liu F,Huang J.Detangling electrolyte chemical dynamics in lithium sulfur batteries by operando monitoring with optical resonance combs.Nat Commun2023;14:7350 PMCID:PMC10645864

[17]

Liu D,Zhou G.Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect.Adv Sci2018;5:1700270 PMCID:PMC5770674

[18]

Xu N,Liu X,Chen Y.Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates.Nano Lett2017;17:538-43

[19]

Lei T,Lv W.Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries.Joule2018;2:2091-104

[20]

Jeong YC,Nam S,Yang SJ.Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries.Adv Funct Mater2018;28:1707411

[21]

Xiang Y,Lei J.Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress.ChemSusChem2016;9:3023-39

[22]

Huang J,Wei F.Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: progress and prospects.Energy Storage Mater2015;1:127-45

[23]

Waqas M,Tang M.A decade of development in cathode-facing surface modified separators for high-performance Li-S batteries.Energy Storage Mater2024;72:103682

[24]

Chung SH.A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries.Adv Mater2014;26:7352-7

[25]

Su YS.Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer.Nat Commun2012;3:1166

[26]

Chen L,Li W,Liu Y.Interlayer design based on carbon materials for lithium-sulfur batteries: a review.J Mater Chem A2020;8:10709-35

[27]

Li S,Zheng J,Song H.Inhibition of polysulfide shuttles in Li-S batteries: modified separators and solid-state electrolytes.Adv Energy Mater2021;11:2000779

[28]

Chung S.Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries.Adv Funct Mater2014;24:5299-306

[29]

Balach J,Klose M,Eckert J.Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries.Adv Funct Mater2015;25:5285-91

[30]

Guillerm V,Dan-Hardi M.A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks.Angew Chem Int Ed2012;51:9267-71

[31]

Latroche M,Serre C.Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101.Angew Chem Int Ed2006;118:8407-11

[32]

Serre C.Hybrid open frameworks. 8. Hydrothermal synthesis, crystal structure, and thermal behavior of the first three-dimensional titanium(IV) diphosphonate with an open structure:  Ti3O2(H2O)2(O3P-(CH2)-PO3)2·(H2O)2, or MIL-22.Inorg Chem1999;38:5370-3

[33]

Gagnon KJ,Clearfield A.Conventional and unconventional metal-organic frameworks based on phosphonate ligands: MOFs and UMOFs.Chem Rev2012;112:1034-54

[34]

Serre C,Lightfoot P.Synthesis, structure and properties of related microporous N,N′-piperazinebismethylenephosphonates of aluminum and titanium.Chem Mater2006;18:1451-7

[35]

Fang R,Sun Z,Cheng HM.More reliable lithium-sulfur batteries: status, solutions and prospects.Adv Mater2017;29:1606823

[36]

Manthiram A,Chung SH,Su YS.Rechargeable lithium-sulfur batteries.Chem Rev2014;114:11751-87

[37]

Yang H.Secondary-component incorporated hollow MOFs and derivatives for catalytic and energy-related applications.Adv Mater2019;31:e1800743

[38]

Xu Y,Wang J.Design of quasi-metal-organic frameworks for solid polymer electrolytes enabling an ultra-stable interface with Li metal anode.Angew Chem Int Ed2025;64:e202416170

[39]

Zhou C,Xu X.Metal-organic frameworks enable broad strategies for lithium-sulfur batteries.Natl Sci Rev2021;8:nwab055 PMCID:PMC8692935

[40]

Zhu D,Xu B.Recent advances in interlayer and separator engineering for lithium-sulfur batteries.J Energy Chem2021;57:41-60

[41]

Tao X,Yan R.Engineering MOFs-derived nanoarchitectures with efficient polysulfides catalytic sites for advanced Li-S batteries.Adv Mater Technol2023;8:2200238

[42]

Zhou T,Ye S,Liu J.Fundamental, application and opportunities of single atom catalysts for Li-S batteries.Energy Storage Mater2023;55:322-55

[43]

Zheng Y,Xue H.Metal-organic frameworks for lithium-sulfur batteries.J Mater Chem A2019;7:3469-91

[44]

Jiang G,Zheng N.MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes.Energy Storage Mater2019;23:181-9

[45]

Li Z,Ge X.Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries.Nano Energy2016;23:15-26

[46]

Wang C,Yu C.Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries.J Mater Chem A2020;8:3421-30

[47]

Boyd DA.Sulfur and its role in modern materials science.Angew Chem Int Ed2016;55:15486-502

[48]

He J.A review on the status and challenges of electrocatalysts in lithium-sulfur batteries.Energy Storage Mater2019;20:55-70

[49]

Suriyakumar S.Mitigation of polysulfide shuttling by interlayer/permselective separators in lithium-sulfur batteries.ACS Appl Energy Mater2020;3:8095-129

[50]

Horcajada P,Serre C.Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging.Nat Mater2010;9:172-8

[51]

Islamoglu T,Son FA.Are you using the right probe molecules for assessing the textural properties of metal-organic frameworks?.J Mater Chem A2021;10:157-73

[52]

Furukawa H,Go YB.Ultrahigh porosity in metal-organic frameworks.Science2010;329:424-8

[53]

Zhang X,Liu X.A historical overview of the activation and porosity of metal-organic frameworks.Chem Soc Rev2020;49:7406-27

[54]

Kang X,Zou R.Size effect for inhibiting polysulfides shuttle in lithium-sulfur batteries.Small2024;20:e2306503

[55]

Chang Z,Wang J,He P.Fabricating better metal-organic frameworks separators for Li-S batteries: pore sizes effects inspired channel modification strategy.Energy Storage Mater2020;25:164-71

[56]

Hong XJ,Guo YK.Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries.Nanoscale2018;10:2774-80

[57]

Ji Z,Li Q.Anchoring lithium polysulfides via affinitive interactions: electrostatic attraction, hydrogen bonding, or in parallel?.J Phys Chem C2015;119:20495-502

[58]

Wang Z,Hua J.An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li-S batteries.Small Methods2020;4:2000082

[59]

Wang Z,Yang Y.Mixed-metal-organic framework with effective lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries.ACS Appl Mater Interfaces2015;7:20999-1004

[60]

Zheng J,Wu D.Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries.Nano Lett2014;14:2345-52

[61]

He S,Liu S,Qiu J.A universal MOF-confined strategy to synthesize atomically dispersed metal electrocatalysts toward fast redox conversion in lithium-sulfur batteries.Adv Funct Mater2024;34:2314133

[62]

Borchardt L,Kaskel S.Carbon materials for lithium sulfur batteries-ten critical questions.Chemistry2016;22:7324-51

[63]

Han J,Wang R.Investigation of the mechanism of metal-organic frameworks preventing polysulfide shuttling from the perspective of composition and structure.J Mater Chem A2020;8:6661-9

[64]

Zang Y,Huang J,Xu G.Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries.Adv Energy Mater2018;8:1802052

[65]

Chung SH.High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator.J Phys Chem Lett2014;5:1978-83

[66]

Yang HC,Hou J,Chen V.Janus membranes: creating asymmetry for energy efficiency.Adv Mater2018;30:e1801495

[67]

Li M,Huang J.Metal-organic framework-based separators for enhancing Li-S battery stability: mechanism of mitigating polysulfide diffusion.ACS Energy Lett2017;2:2362-7

[68]

Yang HC,Chen V.Janus membranes: exploring duality for advanced separation.Angew Chem Int Ed2016;55:13398-407

[69]

Wu F,Chen L.Metal-organic frameworks composites threaded on the CNT knitted separator for suppressing the shuttle effect of lithium sulfur batteries.Energy Storage Mater2018;14:383-91

[70]

Ma B,Deng X.Construction of KB@ZIF-8/PP composite separator for lithium-sulfur batteries with enhanced electrochemical performance.Polymers2021;13:4210 PMCID:PMC8659480

[71]

Razaq R,Småbråten DR.Synergistic effect of bimetallic MOF modified separator for long cycle life lithium-sulfur batteries.Adv Energy Mater2024;14:2302897

[72]

Fan Y,Zhang F,Zhao Y.Suppressing the shuttle effect in lithium-sulfur batteries by a UiO-66-modified polypropylene separator.ACS Omega2019;4:10328-35 PMCID:PMC6648104

[73]

Wang X,Zhao Y.Accelerated multi-step sulfur redox reactions in lithium-sulfur batteries enabled by dual defects in metal-organic framework-based catalysts.Angew Chem Int Ed2023;62:e202306901

[74]

Li L,Wang J.Electrocatalytic MOF-carbon bridged network accelerates Li+-solvents desolvation for high Li+ diffusion toward rapid sulfur redox kinetics.Adv Funct Mater2023;33:2212499

[75]

Guo S,Wang J.Ordered structure of interlayer constructed with metal-organic frameworks improves the performance of lithium-sulfur batteries.Nano Res2021;14:4556-62

[76]

Lin S,Chen R.Lithium sulfonate-rich MOF modified separator enables high performance lithium-sulfur batteries.J Alloys Compd2023;965:171389

[77]

Hong XJ,Yang Y.Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium-sulfur batteries.ACS Nano2019;13:1923-31

[78]

Tian M,Yao M.Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries.Energy Storage Mater2019;21:14-21

[79]

Chen H,Chen C.Conductive MOF-modified separator for mitigating the shuttle effect of lithium-sulfur battery through a filtration method.ACS Appl Mater Interfaces2019;11:11459-65

[80]

Wang J,Wang X.Activation of MOF catalysts with low steric hindrance via undercoordination chemistry for efficient polysulfide conversion in lithium-sulfur battery.Adv Energy Mater2024;14:2402072

[81]

Katz MJ,Colón YJ.A facile synthesis of UiO-66, UiO-67 and their derivatives.Chem Commun2013;49:9449-51

[82]

Ponnada S,Aslfattahi N.Sustainable metal-organic framework co-engineered glass fiber separators for safer and longer cycle life of Li-S batteries.J Alloys Compd2023;941:168962

[83]

Yang Y,Xia M.Elaborately converting hierarchical NiCo-LDH to rod-like LDH-decorated MOF as interlayer for high-performance lithium-sulfur battery.Mater Today Phys2023;35:101112

[84]

Ren Y,Wang B.Synergistic adsorption-electrocatalysis of 2D/2D heterostructure toward high performance Li-S batteries.Chem Eng J2022;439:135535

[85]

Bai S,Zhu K,Zhou H.Metal-organic framework-based separator for lithium-sulfur batteries.Nat Energy2016;1:BFnenergy201694

[86]

Bai S,Wu S.A long-life lithium-sulphur battery by integrating zinc-organic framework based separator.J Mater Chem A2016;4:16812-7

[87]

He Y,Wu S.Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries.Adv Energy Mater2018;8:1802130

[88]

Li Y,Wang D.Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries.Adv Mater2020;32:e1906722

[89]

Li J,Zhu J.Hybrid co-based MOF nanoboxes/CNFs interlayer as microreactors for polysulfides-trapping in lithium-sulfur batteries.J Energy Chem2021;57:469-76

[90]

Zheng S,Wu L,Liu G.Carbon fiber supported two-dimensional ZIF-7 interlayer for durable lithium-sulfur battery.J Alloys Compd2021;870:159412

[91]

Li L,Wang Y,Wu F.Rational design of a well-aligned metal-organic framework nanopillar array for superior lithium-sulfur batteries.Chem Eng J2023;454:140043

[92]

Wang Y,Huang J.2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li-S battery.Energy Storage Mater2021;36:466-77

[93]

Chiochan P,Phattharasupakun N.Chemical adsorption and physical confinement of polysulfides with the janus-faced interlayer for high-performance lithium-sulfur batteries.Sci Rep2017;7:17703 PMCID:PMC5735181

[94]

Jin G,Dang B,Li J.Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium-sulfur batteries.Front Chem Sci Eng2022;16:511-22

[95]

Lu W,Lamaire A.Unraveling the mechanisms of zirconium metal-organic frameworks-based mixed-matrix membranes preventing polysulfide shuttling.Small Sci2024;4:2300339

[96]

Ma X,Chen X,Xu Y.Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose.Chem Eng J2019;356:227-35

[97]

Yang J,Li C,Long B.A free-standing sulfur-doped microporous carbon interlayer derived from luffa sponge for high performance lithium-sulfur batteries.J Mater Chem A2016;4:14324-33

[98]

Dechnik J,Doonan CJ,Sumby CJ.Mixed-matrix membranes.Angew Chem Int Ed2017;56:9292-310

[99]

Lu Y,Chan JY.Homochiral MOF-polymer mixed matrix membranes for efficient separation of chiral molecules.Angew Chem Int Ed2019;131:17084-91

[100]

Cheng Y,Japip S.Advanced porous materials in mixed matrix membranes.Adv Mater2018;30:e1802401

[101]

Goh SH,Yong WF.Metal-organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation: a review on advanced materials in harsh environmental applications.Small2022;18:e2107536

[102]

Chung T,Li Y.Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation.Prog Polym Sci2007;32:483-507

[103]

Khulbe KC,Feng CY.Recent development on the effect of water/moisture on the performance of zeolite membrane and MMMs containing zeolite for gas separation; review.RSC Adv2016;6:42943-61

[104]

Denny MS Jr.In situ modification of metal-organic frameworks in mixed-matrix membranes.Angew Chem Int Ed2015;54:9029-32

[105]

Sung S,Lee S,Yoon WY.Increasing sulfur utilization in lithium-sulfur batteries by a Co-MOF-74@MWCNT interlayer.J Energy Chem2021;60:186-93

[106]

Liang J,Li F.Carbon materials for Li-S batteries: functional evolution and performance improvement.Energy Storage Mater2016;2:76-106

[107]

Leng X,Yang M.Bimetallic Ni-Co MOF@PAN modified electrospun separator enhances high-performance lithium-sulfur batteries.J Energy Chem2023;82:484-96

[108]

Su YS.A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer.Chem Commun2012;48:8817-9

[109]

Wei Seh Z,Cha JJ.Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries.Nat Commun2013;4:1331

[110]

Gao P,Chen Z.Flexible and hierarchically structured sulfur composite cathode based on the carbonized textile for high-performance Li-S batteries.ACS Appl Mater Interfaces2018;10:3938-47

[111]

Li Z,Lou XW.Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries.Angew Chem Int Ed2015;127:13078-82

[112]

Liang X.In situ reactive assembly of scalable core-shell sulfur-MnO2 composite cathodes.ACS Nano2016;10:4192-8

[113]

Carter R,Muralidharan N,Douglas A.Polysulfide anchoring mechanism revealed by atomic layer deposition of V2O5 and sulfur-filled carbon nanotubes for lithium-sulfur batteries.ACS Appl Mater Interfaces2017;9:7185-92

[114]

Zhang Y,Zhang A.Novel V2O5/S composite cathode material for the advanced secondary lithium batteries.Solid State Ion2010;181:835-8

[115]

Han X,Chen X.Reactivation of dissolved polysulfides in Li-S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth.Nano Energy2013;2:1197-206

[116]

Zhang Z,Zhang Z,Li J.Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries.Electrochim Acta2014;129:55-61

[117]

Ahn W,Lee DU,Chen Z.Interaction mechanism between a functionalized protective layer and dissolved polysulfide for extended cycle life of lithium sulfur batteries.J Mater Chem A2015;3:9461-7

[118]

Yim T,Park NH.Effective polysulfide rejection by dipole-aligned BaTiO3 coated separator in lithium-sulfur batteries.Adv Funct Mater2016;26:7817-23

[119]

Zhang Z,Xiang Y.Cellulose-based material in lithium-sulfur batteries: a review.Carbohydr Polym2021;255:117469

[120]

Tignol P,Dupont AL.A Sustainable one-pot preparation method for very high porous solids loading paper membranes. ChemRxiv 2023.

[121]

Batyrgali N,Tolganbek N,Bakenov Z.Recent advances on modification of separator for Li/S batteries.ACS Appl Energy Mater2023;6:588-604

[122]

Ryu J,Lee S,Park S.A game changer: functional nano/micromaterials for smart rechargeable batteries.Adv Funct Mater2020;30:1902499

[123]

Pathak AD,Choi W.Towards the commercialization of Li-S battery: from lab to industry.Energy Storage Mater2024;72:103711

[124]

Zheng Z,Pei F.High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li-S batteries.Adv Funct Mater2016;26:8952-9

[125]

Xiang Y,Kottapalli AGP.Status and perspectives of hierarchical porous carbon materials in terms of high-performance lithium-sulfur batteries.Carbon Energy2022;4:346-98

[126]

Pei F,Fu A.A two-dimensional porous carbon-modified separator for high-energy-density Li-S batteries.Joule2018;2:323-36

[127]

Doris SE,Frischmann PD,Helms BA.Understanding and controlling the chemical evolution and polysulfide-blocking ability of lithium-sulfur battery membranes cast from polymers of intrinsic microporosity.J Mater Chem A2016;4:16946-52

[128]

Hou J,Sun S.Single-walled carbon nanotubes film supported lithiated PIM-1 ultrathin selective barrier: a multifunctional layer for polypropylene separator to boost performance of Li-S batteries.Polymer2023;281:126137

[129]

Liu W,Ma L.An ion sieving conjugated microporous thermoset ultrathin membrane for high-performance Li-S battery.Energy Storage Mater2022;49:1-10

[130]

Zhu K,Yu M.Multiple boosting Janus membranes synergized with Li-rich PAF-6 and carbon nanoparticles for high performance lithium-sulfur batteries.J Mater Chem A2022;10:24106-14

[131]

Zhang Z,Li Z.Chemical and physical synergism between PAF-54 and SFPEEKK for effective shuttle effect inhibition of lithium-sulfur battery.Mater Today Energy2023;38:101455

[132]

Ghasemiestahbanati E,Konstas K.Exceptional lithium diffusion through porous aromatic framework (PAF) interlayers delivers high capacity and long-life lithium-sulfur batteries.J Mater Chem A2022;10:902-11

[133]

Cheng Z,Zhong H,Li X.Porous organic polymers for polysulfide trapping in lithium-sulfur batteries.Adv Funct Mater2018;28:1707597

[134]

Geng K,Liu R.Covalent organic frameworks: design, synthesis, and functions.Chem Rev2020;120:8814-933

[135]

Sasmal HS,Bhange SN.Superprotonic conductivity in flexible porous covalent organic framework membranes.Angew Chem Int Ed2018;130:11060-4

[136]

Dey K,Rout KC.Selective molecular separation by interfacially crystallized covalent organic framework thin films.J Am Chem Soc2017;139:13083-91

[137]

Dey K,Sasmal HS,Banerjee R.Self-assembly-driven nanomechanics in porous covalent organic framework thin films.J Am Chem Soc2021;143:955-63

[138]

Yoo J,Jung GY.COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries.Nano Lett2016;16:3292-300

[139]

Wang J,Wei Q,Cai S.Covalent organic frameworks as the coating layer of ceramic separator for high-efficiency lithium-sulfur batteries.ACS Appl Nano Mater2018;1:132-8

[140]

Hu B,Fan Z.Covalent organic framework based lithium-sulfur batteries: materials, interfaces, and solid-state electrolytes.Adv Energy Mater2023;13:2203540

[141]

Koner K,Shetty D.Thickness-driven synthesis and applications of covalent organic framework nanosheets.Angew Chem Int Ed2024;136:e202406418

[142]

Sasmal HS,Majumder P.Landscaping covalent organic framework nanomorphologies.J Am Chem Soc2022;144:11482-98

[143]

Kandambeth S,Banerjee R.Covalent organic frameworks: chemistry beyond the structure.J Am Chem Soc2019;141:1807-22

[144]

Khan R,Singh Rawat K.Super-oxidizing covalent triazine framework electrocatalyst for two-electron water oxidation to H2O2.Angew Chem Int Ed2023;62:e202313836

PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

/