Recent progress in biocompatible miniature supercapacitors

Pingping Luo , Qing Liu , Rui Chen , Huibo Shao , Yu Ma , Yang Zhao

Energy Materials ›› 2025, Vol. 5 ›› Issue (7) : 500070

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (7) :500070 DOI: 10.20517/energymater.2024.239
Review

Recent progress in biocompatible miniature supercapacitors

Author information +
History +
PDF

Abstract

With the advancement of wearable and implantable health and medical electronics, biocompatible miniature energy storage devices were developed rapidly. In particular, biocompatible miniature supercapacitors (BMSCs) have the advantages of conventional supercapacitors, such as high-power density, fast charging/discharging rate, and long operating lifetime, as well as strong selectivity of biocompatible materials. They are expected to play an important role in personalized electronic integration systems. Biocompatibility involves the biosafety of materials and relates to the mechanics and geometrical forms. For example, BMSCs should be thin and compact, ensuring ease of portability and comfort for users. They should also be flexible and stretchable to conform to the skin or tissue, providing stable power to electronics even under deformation. Furthermore, biodegradability/bioabsorbability ensures they are both body- and environment-friendly. This review summarizes the recent research progress of BMSCs as wearable and implantable energy storage devices, including the basic requirements and the selection of the components. Additionally, the advanced applications of BMSCs in multifunctional integration systems for real-time health monitoring and medical treatment are introduced, along with the associated challenges and prospects.

Keywords

Miniature supercapacitor / biocompatible / wearable / implantable / health monitoring and medical treatment

Cite this article

Download citation ▾
Pingping Luo, Qing Liu, Rui Chen, Huibo Shao, Yu Ma, Yang Zhao. Recent progress in biocompatible miniature supercapacitors. Energy Materials, 2025, 5(7): 500070 DOI:10.20517/energymater.2024.239

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Manjakkal L,Yogeswaran N,Dahiya R.A wearable supercapacitor based on conductive PEDOT:PSS-coated cloth and a sweat electrolyte.Adv Mater2020;32:e1907254

[2]

Lu Y,Wang S.Stretchable graphene-hydrogel interfaces for wearable and implantable bioelectronics.Nat Electron2024;7:51-65

[3]

Ok J,Jung YH.Wearable and implantable cortisol-sensing electronics for stress monitoring.Adv Mater2024;36:e2211595

[4]

Zhang B,Li J.Biocompatible and stable quasi-solid-state zinc-ion batteries for real-time responsive wireless wearable electronics.Energy Environ Sci2024;17:3878-87

[5]

Zhang P,Du P.Electrochemical and electrical biosensors for wearable and implantable electronics based on conducting polymers and carbon-based materials.Chem Rev2024;124:722-67

[6]

Sim HJ,Lee DY.Biomolecule based fiber supercapacitor for implantable device.Nano Energy2018;47:385-92

[7]

Chen X,Zhuang Y.Stretchable Supercapacitors as emergent energy storage units for health monitoring bioelectronics.Adv Energy Mater2020;10:1902769

[8]

Huang X,Wang H.Materials strategies and device architectures of emerging power supply devices for implantable bioelectronics.Small2020;16:1902827

[9]

Inman A,Bi L.Wearable energy storage with MXene textile supercapacitors for real world use.J Mater Chem A2023;11:3514-23

[10]

Chao Y,Chen Z.Multiscale structural design of 2D nanomaterials-based flexible electrodes for wearable energy storage applications.Adv Sci2024;11:e2305558

[11]

Gao T,Yang X.Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage.J Energy Chem2022;71:192-200

[12]

Guan T,Qiu D.Recent progress of graphene fiber/fabric supercapacitors: from building block architecture, fiber assembly, and fabric construction to wearable applications.Adv Fiber Mater2023;5:896-927

[13]

Zhang X,Zhou K.Fully printed and sweat-activated micro-batteries with lattice-match Zn/MoS2 anode for long-duration wearables.Adv Mater2024;36:2412844

[14]

Rafieerad A,Sequiera GL.Development of fluorine-free tantalum carbide MXene hybrid structure as a biocompatible material for supercapacitor electrodes.Adv Funct Mater2021;31:2100015

[15]

Gao D,Liu C.A survey of hybrid energy devices based on supercapacitors.Green Energy Environ2023;8:972-88

[16]

Lin X,Yang N.Design and construction of 1D/2D/3D fabric-based wearable micro-supercapacitors.J Power Sources2023;560:232712

[17]

Shin S,Balhatchet CJ,Forse AC.Metal-organic framework supercapacitors: challenges and opportunities.Adv Funct Mater2024;34:2308497

[18]

Huang J,You Y.Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization.Adv Funct Mater2023;33:2213095

[19]

Li L,Liu W.Progress and perspectives in designing flexible microsupercapacitors.Micromachines2021;12:1305 PMCID:PMC8621582

[20]

Chodankar NR,Safarkhani M.Revolutionizing implantable technology: biocompatible supercapacitors as the future of power sources.Adv Funct Mater2024;34:2406819

[21]

Hepel M,Samuilov V.High power-density WO3-x-grafted corannulene-modified graphene nanostructures for micro-supercapacitors.J Electroanal Chem2023;928:116990

[22]

Sun N,Liu W.Significant enhancement in the power density of micro-supercapacitors by the in situ growth of TiN/TiOxNy-laminated films.ACS Sustainable Chem Eng2022;10:3614-22

[23]

Xu S,Cho J.Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems.Nat Commun2013;4:1543

[24]

Yun J,Lee H.Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor.Nano Energy2018;49:644-54

[25]

Kim D,Lee H.Body-attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices.Adv Mater2016;28:748-56

[26]

Xu S,Dargusch M,Zou J.Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications.Prog Mater Sci2021;121:100840

[27]

Keum K,Hong SY,Lee SS.Flexible/stretchable supercapacitors with novel functionality for wearable electronics.Adv Mater2020;32:e2002180

[28]

Xu M,Yang K.Minimally invasive power sources for implantable electronics.Exploration2024;4:20220106 PMCID:PMC10867386

[29]

An T.Recent progress in stretchable supercapacitors.J Mater Chem A2018;6:15478-94

[30]

Deng J,Wu J.Electrical bioadhesive interface for bioelectronics.Nat Mater2021;20:229-36

[31]

Feron K,Sherwood C,Brichta A.Organic bioelectronics: materials and biocompatibility.Int J Mol Sci2018;19:2382 PMCID:PMC6121695

[32]

De Jong WH, Carraway JW, Geertsma RE. In vivo and in vitro testing for the biological safety evaluation of biomaterials and medical devices. In: Boutrand JP, editor. Biocompatibility and performance of medical devices. Elsevier; 2020. pp. 123-66.

[33]

Albert D.Material and chemical characterization for the biological evaluation of medical device biocompatibility. In: Boutrand JP, editor. Biocompatibility and performance of medical devices. Elsevier; 2012. pp. 65-94.

[34]

Piersma AH,van Duursen MB.Evaluation of an alternative in vitro test battery for detecting reproductive toxicants.Reprod Toxicol2013;38:53-64

[35]

Kirkland D,Henderson L.Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity.Mutat Res2005;584:1-256

[36]

Chae JS,Roh KC.Electrode materials for biomedical patchable and implantable energy storage devices.Energy Storage Mater2020;24:113-28

[37]

Sheng H,Liang J.Recent advances of energy solutions for implantable bioelectronics.Adv Healthc Mater2021;10:e2100199

[38]

Guo X,Qin J,Zhu H.Fracture-resistant stretchable materials: an overview from methodology to applications.Adv Mater2025;37:e2312816

[39]

Huang Y,Shi F.An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte.Angew Chem Int Ed2017;56:9141-5

[40]

Yu M,Wang X.Emerging design strategies toward developing next-generation implantable batteries and supercapacitors.Adv Funct Mater2023;33:2301877

[41]

Li Y,Liu W.Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design.Nat Commun2023;14:4488 PMCID:PMC10372055

[42]

Li D,Zhu Y.A biocompatible, thin, wet-adhesive, and high-performance zinc-ion hybrid supercapacitor as an implantable power source for biomedical application.Nano Energy2024;132:110345

[43]

Chen L,Peng F.Nanostructural surfaces with different elastic moduli regulate the immune response by stretching macrophages.Nano Lett2019;19:3480-9

[44]

Yuan M,Wang Z,Li H.Smart wearable band-aid integrated with high-performance micro-supercapacitor, humidity and pressure sensor for multifunctional monitoring.Chem Eng J2023;453:139898

[45]

Lee Y,Li Z.Nano-biosupercapacitors enable autarkic sensor operation in blood.Nat Commun2021;12:4967 PMCID:PMC8382768

[46]

Zhu RC.Toward fully processable micro-supercapacitors.Joule2021;5:2257-8

[47]

Wang Y,Wang G.Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density.Adv Funct Mater2020;30:1907284

[48]

Bai C,Chen R.A 4 V planar Li-ion micro-supercapacitor with ultrahigh energy density.ACS Energy Lett2024;9:410-8

[49]

Zheng S,Das P,Bao X.The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries.Adv Mater2019;31:e1900583

[50]

Jiao Y,Xiao H.All-solid-state wire-shaped micro-supercapacitors: a microfluidic approach to core-shell structured bacterial cellulose-GN/PPy fibers.Carbohydr Polym2025;349:122996

[51]

Wang M,Bai C.Ultrastretchable MXene microsupercapacitors.Small2023;19:e2300386

[52]

Liu H,Zheng X,Duan H.Emerging miniaturized energy storage devices for microsystem applications: from design to integration.Int J Extrem Manuf2020;2:042001

[53]

Hu J,Xu Z.Hybrid printed three-dimensionally integrated micro-supercapacitors for compact on-chip application.Applied Physics Reviews2021;8:011401

[54]

Cha GD,Lee J.Bioresorbable electronic implants: history, materials, fabrication, devices, and clinical applications.Adv Healthc Mater2019;8:e1801660

[55]

Piro B,Thu VT.Sensors made of natural renewable materials: efficiency, recyclability or biodegradability-the green electronics.Sensors2020;20:5898 PMCID:PMC7594081

[56]

Liu Y,Hayes B.Degradable, absorbable or resorbable-what is the best grammatical modifier for an implant that is eventually absorbed by the body?.Sci China Mater2017;60:377-91

[57]

Yu X,Mahajan BK,Pan H.Materials, processes, and facile manufacturing for bioresorbable electronics: a review.Adv Mater2018;30:e1707624

[58]

Khodaei T,Suresh AP.Immune response differences in degradable and non-degradable alloy implants.Bioact Mater2023;24:153-70 PMCID:PMC9793227

[59]

Lan L,Xiong J.Sustainable natural bio-origin materials for future flexible devices.Adv Sci2022;9:e2200560

[60]

Sheng H,Li B.A thin, deformable, high-performance supercapacitor implant that can be biodegraded and bioabsorbed within an animal body.Sci Adv2021;7 PMCID:PMC7793580

[61]

Lee G,Won SM.Fully biodegradable microsupercapacitor for power storage in transient electronics.Adv Energy Mater2017;7:1700157

[62]

Yin L,Xu H.Materials, designs, and operational characteristics for fully biodegradable primary batteries.Adv Mater2014;26:3879-84

[63]

Hwang SW,Huang X.High-performance biodegradable/transient electronics on biodegradable polymers.Adv Mater2014;26:3905-11

[64]

Hwang SW,Cheng H.Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors.Nano Lett2015;15:2801-8

[65]

Zhong M,Li X.Carbon nanomaterials and their composites for supercapacitors.Carbon Energy2022;4:950-85

[66]

Wang Y,Liu K,Cai X.Biomass-based materials for advanced supercapacitor: principles, progress, and perspectives.Aggregate2024;5:e428

[67]

Li K,Zhu Q.Three-dimensional MXenes for supercapacitors: a review.Small Methods2022;6:e2101537

[68]

Girirajan M,Pulidindi IN,Sangaraju S.An insight into the nanoarchitecture of electrode materials on the performance of supercapacitors.Coord Chem Rev2024;518:216080

[69]

Jaleh B,Eslamipanah M.The role of carbon-based materials for fuel cells performance.Carbon2022;198:301-52

[70]

Mokhtar NAIM,Khairul WM.Electrochemical and optical sensors made of composites of metal-organic frameworks and carbon-based materials. A review.Environ Chem Lett2022;20:3099-131

[71]

Zhang G,Wang L.Recent advances of biomass derived carbon-based materials for efficient electrochemical energy devices.J Mater Chem A2022;10:9277-307

[72]

He S,Wan J.Biocompatible carbon nanotube fibers for implantable supercapacitors.Carbon2017;122:162-7

[73]

Chae JS,Kim S.A durable high-energy implantable energy storage system with binder-free electrodes useable in body fluids.J Mater Chem A2022;10:4611-20

[74]

Kim MJ,Sohn WB,Kim W.Ultrahigh energy density and ultrafast response in symmetric microsupercapacitors with 3D bicontinuous pseudocapacitance.Adv Energy Mater2024;14:2402322

[75]

Ding W,Wang Y.Redox-active “structural pillar” molecular doping strategy towards high-performance polyaniline-based flexible supercapacitors.Chem Eng J2024;495:153505

[76]

Gan Z,Xu X,Yu T.Nanostructure and advanced energy storage: elaborate material designs lead to high-rate pseudocapacitive ion storage.ACS Nano2022;16:5131-52

[77]

Gao Y,Xu X.Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density.J Mater Chem A2022;10:9773-87

[78]

Ortiz-quiñonez J,Pal U.Catalytic and pseudocapacitive energy storage performance of metal (Co, Ni, Cu and Mn) ferrite nanostructures and nanocomposites.Prog Mater Sci2022;130:100995

[79]

Wan Y,Li Y.Laser thermal shock enabling ultrafastspin regulation of MnO2 for robust pseudocapacitive energy storage.Adv Funct Mater2024;34:2311157

[80]

Ge R.Ultra-small RuO2 nanoparticles supported on carbon cloth as a high-performance pseudocapacitive electrode.Adv Compos Hybrid Mater2022;5:696-703

[81]

Alam A,Jo H.Ultrahigh-energy-density supercapacitors based on all-pseudocapacitive binary metal sulfide-MXene composites.J Mater Chem A2024;12:13882-9

[82]

Wu Z,Li H.Direct growth of porous vanadium nitride on carbon cloth with commercial-level mass loading for solid-state supercapacitors.Chem Eng J2022;444:136597

[83]

Mahadik S,Kim JY.Syntheses and electronic structure engineering of transition metal nitrides for supercapacitor applications.J Mater Chem A2022;10:14655-73

[84]

Selvam S,Chan A.Biocompatible supercapacitor engineered from marine collagen impregnated with polypyrrole and tungsten disulfide.J Energy Storage2024;96:112735

[85]

Liu Y,Zhou W.Biocompatible, high-performance, wet-adhesive, stretchable all-hydrogel supercapacitor implant based on PANI@rGO/Mxenes electrode and hydrogel electrolyte.Adv Energy Mater2021;11:2101329

[86]

Wang X,Zhou Q.Integrating supercapacitor with sodium hyaluronate based hydrogel as a novel all-in-one wound dressing: self-powered electronic stimulation.Chem Eng J2023;452:139491

[87]

Niska K,Radomski MW.Metal nanoparticles in dermatology and cosmetology: interactions with human skin cells.Chem Biol Interact2018;295:38-51

[88]

Zhu S,Zhu H,Li Y.Pencil-drawing skin-mountable micro-supercapacitors.Small2019;15:e1804037

[89]

Kumar N,Kang J.Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT:PSS/reduced-graphene oxide.Electrochim Acta2018;270:37-47

[90]

Zhang A,Xu L,Lo EH.Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature.Science2023;381:306-12 PMCID:PMC11412271

[91]

Selvaraj M,Manivasagam TG.Biomass derived nitrogen-doped activated carbon and novel biocompatible gel electrolytes for solid-state supercapacitor applications.J Energy Storage2023;72:108543

[92]

Wu L,Wu Z.Recent Advancements and perspectives of biodegradable polymers for supercapacitors.Adv Funct Mater2023;33:2211454

[93]

Wang C,Zhang Y.Silk-based advanced materials for soft electronics.Acc Chem Res2019;52:2916-27

[94]

Roy BK,Rashid TU.Chitosan-based materials for supercapacitor applications: a review.J Mater Chem A2021;9:17592-642

[95]

Jiang C,Zhang S.Chitosan/graphene oxide hybrid hydrogel electrode with porous network boosting ultrahigh energy density flexible supercapacitor.Int J Biol Macromol2023;225:1437-48

[96]

Hsu SH,Chen CW.Biodegradable polymer scaffolds.J Mater Chem B2016;4:7493-505

[97]

Liu H,Cai C.Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose‐based composite carbon aerogels for compressive supercapacitor and strain sensor.Adv Funct Mater2022;32:2113082

[98]

Zhao D,Cheng W,Wu Y.Cellulose-based flexible functional materials for emerging intelligent electronics.Adv Mater2021;33:e2000619

[99]

Pilipchuk SP,Jiao Y.Integration of 3D printed and micropatterned polycaprolactone scaffolds for guidance of oriented collagenous tissue formation in vivo.Adv Healthc Mater2016;5:676-87 PMCID:PMC4805502

[100]

Lee H,Yun J.Facile fabrication of a fully biodegradable and stretchable serpentine-shaped wire supercapacitor.Chem Eng J2019;366:62-71

[101]

Chae JS,Kwak CH.A biocompatible implant electrode capable of operating in body fluids for energy storage devices.Nano Energy2017;34:86-92

[102]

Singh R,Istif E.A review of bioresorbable implantable medical devices: materials, fabrication, and implementation.Adv Healthc Mater2020;9:e2000790

[103]

Kang SK,Hwang SW.Bioresorbable silicon electronic sensors for the brain.Nature2016;530:71-6

[104]

Seok S.Polymer-based biocompatible packaging for implantable devices: packaging method, materials, and reliability simulation.Micromachines2021;12:1020 PMCID:PMC8470363

[105]

Shi Y,Sun A,Allen MG.Stretchable metal‐air batteries through sliding electrodes.Adv Funct Mater2024;34:2314783

[106]

Hou S,Bai L,Cheng Y.Stretchable electronics with strain-resistive performance.Small2024;20:e2306749

[107]

Gao X,Xu S.Stretchable ionic conductive gels for wearable human-activity detection.Chem Eng J2024;489:151231

[108]

Liang X,Zhang X.Advanced stretchable aerogels and foams for flexible electronics and beyond.Adv Funct Mater2024;34:2408707

[109]

Jost K,Perez CR.Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics.Energy Environ Sci2013;6:2698

[110]

Lee S,Kim S.Wearable supercapacitors printed on garments.Adv Funct Mater2018;28:1705571

[111]

Guo H,Ren D.High-performance flexible micro-supercapacitors printed on textiles for powering wearable electronics.ChemElectroChem2021;8:1574-9

[112]

Li D,Chen X,Huang W.3D wearable fabric-based micro-supercapacitors with ultra-high areal capacitance.Adv Funct Mater2021;31:2107484

[113]

Pal M.CNT yarn based solid state linear supercapacitor with multi-featured capabilities for wearable and implantable devices.Energy Storage Mater2023;57:136-70

[114]

Wang J,Zhu F.Recent progress in micro-supercapacitor design, integration, and functionalization.Small Methods2019;3:1800367

[115]

Zhang Z,Li X.Superelastic supercapacitors with high performances during stretching.Adv Mater2015;27:356-62

[116]

Meng Y,Hu C.All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles.Adv Mater2013;25:2326-31

[117]

Choi C,Sim HJ.Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors.Sci Rep2015;5:9387 PMCID:PMC4369743

[118]

Zamarayeva AM,Wang M.Flexible and stretchable power sources for wearable electronics.Sci Adv2017;3:e1602051 PMCID:PMC5473674

[119]

Keum K,Lee H.Wire-shaped supercapacitors with organic electrolytes fabricated via layer-by-layer assembly.ACS Appl Mater Interfaces2018;10:26248-57

[120]

Chen Y,Wen J.Design of novel wearable, stretchable, and waterproof cable-type supercapacitors based on high-performance nickel cobalt sulfide-coated etching-annealed yarn electrodes.Small2018;14:e1704373

[121]

Choi C,Kim KJ.Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles.RSC Adv2018;8:13112-20 PMCID:PMC9079689

[122]

Lv J,Xu H.Transforming commercial regenerated cellulose yarns into multifunctional wearable electronic textiles.J Mater Chem C2020;8:1309-18

[123]

Gao J,Shao S.Laser-assisted large-scale fabrication of all-solid-state asymmetrical micro-supercapacitor array.Small2018;14:e1801809

[124]

Li L,Lou Z.Flexible planar concentric circular micro-supercapacitor arrays for wearable gas sensing application.Nano Energy2017;41:261-8

[125]

Zhou Y,Zhao F,Bao L.High-energy-density graphene hybrid flexible fiber supercapacitors.Batteries Supercaps2023;6:e202200536

[126]

Ahn J,Jeong Y.High-energy-density fiber supercapacitors based on transition metal oxide nanoribbon yarns for comprehensive wearable electronics.Adv Fiber Mater2024;6:1927-41

[127]

Padmajan Sasikala S,Lim J.Interface-confined high crystalline growth of semiconducting polymers at graphene fibers for high-performance wearable supercapacitors.ACS Nano2017;11:9424-34

[128]

Choi C,Kim KJ.Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors.Nat Commun2016;7:13811 PMCID:PMC5172384

[129]

Li Y,Wu Z.Self-adhesive, self-healing, biocompatible and conductive polyacrylamide nanocomposite hydrogels for reliable strain and pressure sensors.Nano Energy2023;109:108324

[130]

Ye G,Song J,Liu N.A fully biodegradable and biocompatible ionotronic skin for transient electronics.Adv Funct Mater2023;33:2303990

[131]

Wu M,Qiao C.Ultra stretchable, tough, elastic and transparent hydrogel skins integrated with intelligent sensing functions enabled by machine learning algorithms.Chem Eng J2022;450:138212

[132]

Yun TG,Kim DH.All-transparent stretchable electrochromic supercapacitor wearable patch device.ACS Nano2019;13:3141-50

[133]

Kil HJ,Park JW.A self-charging supercapacitor for a patch-type glucose sensor.ACS Appl Mater Interfaces2022;14:3838-48

[134]

Song W,Gan B.Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene.Small2018;14

[135]

Lee G,Park H.Skin-like, dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn-Mo mixed oxide electrodes and air-stable organic electrolyte.ACS Nano2019;13:855-66

[136]

An T,Gong S.A wearable second skin-like multifunctional supercapacitor with vertical gold nanowires and electrochromic polyaniline.Adv Mater Technol2019;4:1800473

[137]

Wang B,Liang J.Microwave-welded and photopolymer-embedded silver nanowire electrodes for skin-like supercapacitors.ACS Appl Energy Mater2022;5:10490-500

[138]

Song K,Cho S.Flexible-device injector with a microflap array for subcutaneously implanting flexible medical electronics.Adv Healthc Mater2018;7:e1800419

[139]

Yang SY,You SS.Powering implantable and ingestible electronics.Adv Funct Mater2021;31:2009289 PMCID:PMC8553224

[140]

Sheng H,Ma Y.Ultrathin, wrinkled, vertically aligned Co(OH)2 nanosheets/Ag nanowires hybrid network for flexible transparent supercapacitor with high performance.ACS Appl Mater Interfaces2019;11:8992-9001

[141]

Zhang C,Huang C.High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems.Nano Energy2021;81:105609

[142]

Zhang CJ,Seral-Ascaso A.Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance.Adv Mater2017;29

[143]

Kuhnt T,Takhsha Ghahfarokhi M.4D printed shape morphing biocompatible materials based on anisotropic ferromagnetic nanoparticles.Adv Funct Mater2022;32:2270289

[144]

Alipoori S,Aboutalebi SH.Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges.J Energy Storage2020;27:101072

[145]

Huang X,Wu G.Multilayer superlattices of monolayer mesoporous carbon framework-intercalated MXene for efficient capacitive energy storage.Adv Energy Mater2024;14:2303417

[146]

Hou P,Wang J.A semi-transparent polyurethane/porous wood composite gel polymer electrolyte for solid-state supercapacitor with high energy density and cycling stability.Chem Eng J2023;454:139954

[147]

Zhang Y,Cheng X.Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs.Angew Chem Int Ed2014;53:14564-8

[148]

Cai Z,Ren J,Lin H.Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes.J Mater Chem A2013;1:258-61

[149]

Park T,Ahn BJ.Implantable anti-biofouling biosupercapacitor with high energy performance.Biosens Bioelectron2024;243:115757

[150]

Dinis H.A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices.Biosens Bioelectron2021;172:112781

[151]

Hwang SW,Kim DH.A physically transient form of silicon electronics.Science2012;337:1640-4 PMCID:PMC3786576

[152]

Fu KK,Dai J,Hu L.Transient electronics: materials and devices.Chem Mater2016;28:3527-39

[153]

Chen X,Kang M.CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors.Nat Commun2018;9:1690 PMCID:PMC5924366

[154]

Chernysheva DV,Ananikov VP.Recent trends in supercapacitor research: sustainability in energy and materials.ChemSusChem2024;17:e202301367

[155]

Li R,Kong D.Recent progress on biodegradable materials and transient electronics.Bioact Mater2018;3:322-33 PMCID:PMC5935787

[156]

Li H,Wang X.Fully bioabsorbable capacitor as an energy storage unit for implantable medical electronics.Adv Sci2019;6:1801625

[157]

Song P,Panwar N.A self-powered implantable drug-delivery system using biokinetic energy.Adv Mater2017;29

[158]

Chen K,Sheng Y,Qu L.An edible and nutritive zinc-ion micro-supercapacitor in the stomach with ultrahigh energy density.ACS Nano2022;16:15261-72

[159]

Guk K,Lim J.Evolution of wearable devices with real-time disease monitoring for personalized healthcare.Nanomaterials2019;9:813 PMCID:PMC6631918

[160]

Teng Y,Du H,Li D.A solar and thermal multi-sensing microfiber supercapacitor with intelligent self-conditioned capacitance and body temperature monitoring.J Mater Chem A2020;8:11695-711

[161]

Yu L,Yao T.All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring.Nano Res2019;12:331-8

[162]

Zha X,Shi L,Xu J.2D bimetallic organic framework nanosheets for high-performance wearable power source and real-time monitoring of glucose.Dalton Trans2023;52:2631-40

[163]

Lu Y,Chen D.Wearable sweat monitoring system with integrated micro-supercapacitors.Nano Energy2019;58:624-32

[164]

Chiou JC,Yeh KT.The methodology to make smart contact lens become a semi-passive system. In: 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS); 2019 Jan 27-31; Seoul, Korea (South). IEEE; 2019. pp. 1006-1009.

[165]

Park J,Kim J.Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations.Sci Adv2019;5:eaay0764 PMCID:PMC6957331

[166]

Jiang Y,Niu S.Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing.Nat Biotechnol2023;41:652-62

[167]

Zhang P,Zhou M.Upconversion 3D bioprinting for noninvasive in vivo molding.Adv Mater2024;36:e2310617

[168]

Peña OA.Cellular and molecular mechanisms of skin wound healing.Nat Rev Mol Cell Biol2024;25:599-616

[169]

Cox A.Velcro compression wraps as an alternative form of compression therapy for venous leg ulcers: a review.Br J Community Nurs2021;26:S10-20

[170]

Dong J,Song F,Lu S.Potential molecular mechanisms of negative pressure in promoting wound healing.Int Wound J2020;17:1428-38 PMCID:PMC7949460

[171]

Kwon K,Won SM.A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature.Nat Biomed Eng2023;7:1215-28

[172]

Lee JH,Min WK.Biocompatible and biodegradable neuromorphic device based on hyaluronic acid for implantable bioelectronics.Adv Funct Mater2021;31:2107074

[173]

Elsanadidy E,Hou B.Self-sustainable intermittent deep brain stimulator.Cell Rep Phys Sci2022;3:101099

PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

/