Piezoelectric cellulose/poly(vinylidene fluoride) glycerogels with synergistically enhanced energy output for wide temperature range

Md. Tariful Islam Mredha , Rumesh Rangana Manimel Wadu , Shuangpeng Li , Adith Varma Rama Varma , Tanish Gupta , Wonoh Lee , Chunli Zhang , Weiqiu Chen , Insu Jeon

Energy Materials ›› 2025, Vol. 5 ›› Issue (7) : 500074

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (7) :500074 DOI: 10.20517/energymater.2024.238
Article

Piezoelectric cellulose/poly(vinylidene fluoride) glycerogels with synergistically enhanced energy output for wide temperature range

Author information +
History +
PDF

Abstract

Gel-based piezoelectric materials are stretchable, wearable, and environmentally friendly, unlike their conventional solid counterparts. However, designing environment-tolerant, high-performance piezoelectric gels is challenging. Herein, we develop a piezoresponsive stretchable glycerogel (GG), leveraging the cooperative structure-forming effect of cellulose, poly(vinylidene fluoride) (PVDF) and glycerol (a green extremotolerant solvent). The facile inter- and intramolecular cellulose/PVDF interactions within the hydrogen-bonded network of glycerol generate a highly electroactive crystalline β-phase while retaining mechanical integrity. Therefore, the synergy-driven GG is more piezoresponsive than gels fabricated using individual polymers. Despite having a low polymer density (≈16 wt%), the GG exhibits impressive functional attributes such as Young’s modulus (≈12 MPa), tensile strength (≈3 MPa), piezoelectric voltage (92 mV cm-2), and current output (110 nA cm-2). Furthermore, it exhibits long-term stability over a wide temperature range (-20 to 80 °C) owing to its robust structural integrity and thermal adaptability. The study findings underscore the viability of preparing high-performance extremotolerant piezoelectric gels for use in next-generation stretchable/wearable piezoelectric sensors and energy devices.

Keywords

Piezoelectric gels / cellulose / poly(vinylidene fluoride) / glycerogels / synergistic effect / wide temperature applicability

Cite this article

Download citation ▾
Md. Tariful Islam Mredha, Rumesh Rangana Manimel Wadu, Shuangpeng Li, Adith Varma Rama Varma, Tanish Gupta, Wonoh Lee, Chunli Zhang, Weiqiu Chen, Insu Jeon. Piezoelectric cellulose/poly(vinylidene fluoride) glycerogels with synergistically enhanced energy output for wide temperature range. Energy Materials, 2025, 5(7): 500074 DOI:10.20517/energymater.2024.238

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luderer G,Merfort L.Impact of declining renewable energy costs on electrification in low-emission scenarios.Nat Energy2022;7:32-42

[2]

Davis SJ,Shaner M.Net-zero emissions energy systems.Science2018;360:eaas9793

[3]

Luderer G,Bertram C.Residual fossil CO2 emissions in 1.5-2 °C pathways.Nat Clim Chang2018;8:626-33

[4]

Wang X.Piezoelectric nanogenerators - harvesting ambient mechanical energy at the nanometer scale.Nano Energy2012;1:13-24

[5]

Donelan JM,Naing V,Weber DJ.Biomechanical energy harvesting: generating electricity during walking with minimal user effort.Science2008;319:807-10

[6]

Yamada T,Toyoda H.Piezoelectric and elastic properties of lithium niobate single crystals.Jpn J Appl Phys1967;6:151

[7]

Acosta M,Rojas V.BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives.Appl Phys Rev2017;4:041305

[8]

Jaffe H.Piezoelectric ceramics.J Ame Ceram Soc1958;41:494-8

[9]

Yang Z,Zu J.High-performance piezoelectric energy harvesters and their applications.Joule2018;2:642-97

[10]

Panda PK.Review: environmental friendly lead-free piezoelectric materials.J Mater Sci2009;44:5049-62

[11]

Sezer N.A comprehensive review on the state-of-the-art of piezoelectric energy harvesting.Nano Energy2021;80:105567

[12]

Wang P,Wang H.The evolution of flexible electronics: from nature, beyond nature, and to nature.Adv Sci2020;7:2001116 PMCID:PMC7578875

[13]

Mredha MTI.Biomimetic anisotropic hydrogels: advanced fabrication strategies, extraordinary functionalities, and broad applications.Prog Mater Sci2022;124:100870

[14]

Mredha MTI,Rama Varma AV,Manimel Wadu RR.Tardigrade-inspired extremotolerant glycerogels.NPG Asia Mater2023;15:472

[15]

Hao XP,Li CY,Zheng Q.Kirigami-design-enabled hydrogel multimorphs with application as a multistate switch.Adv Mater2020;32:e2000781

[16]

Mredha MTI,Tran VT,Jeon I.Hydrogels with superior mechanical properties from the synergistic effect in hydrophobic-hydrophilic copolymers.Chem Eng J2019;362:325-38

[17]

Cianchetti M,Menciassi A.Biomedical applications of soft robotics.Nat Rev Mater2018;3:143-53

[18]

Tran VT,Lee Y.Electrically, thermally, and mechanically anisotropic gels with a wide operational temperature range.Adv Funct Mater2022;32:2110177

[19]

Jeon I,Illeperuma WR,Vlassak JJ.Extremely stretchable and fast self-healing hydrogels.Adv Mater2016;28:4678-83

[20]

Mallick Z, Sarkar U, Mandal D, Roy RK. Synergetic H-bonding and C-T interaction-mediated self-assembled structure results in a room-temperature ferroelectric material exhibiting electric field-induced dipole switching and piezo- and pyroelectric energy conversion.Chem Mater2023;35:3316-28

[21]

Zhao W,Hu S,Tian H.Understanding piezoelectric characteristics of PHEMA-based hydrogel nanocomposites as soft self-powered electronics.Adv Compos Hybrid Mater2018;1:320-31

[22]

Fu R,Zhou Y.A tough and self-powered hydrogel for artificial skin.Chem Mater2019;31:9850-60

[23]

Hu Z,Wei X.Enhancing strain-sensing properties of the conductive hydrogel by introducing PVDF-TrFE.ACS Appl Mater Interfaces2022;14:45853-68

[24]

Rani GM,Motora KG,Jose CRM.Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting.Nano Energy2023;108:108211

[25]

Rani GM,Motora KG.Waste-to-energy: utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting.J Clean Prod2022;363:132532

[26]

Rani GM,Umapathi R,Huh YS.A biocompatible triboelectric nanogenerator-based edible electronic skin for morse code transmitters and smart healthcare applications.Nano Energy2024;128:109899

[27]

Yu S,Cao Z.Alterable robotic skin using material gene expression modulation.Adv Funct Mater2024;2416984

[28]

Mogli G,Sacco A,Stassi S.Ultrasensitive piezoresistive and piezocapacitive cellulose-based ionic hydrogels for wearable multifunctional sensing.ACS Appl Electron Mater2023;5:205-15

[29]

Tran VT,Pathak SK,Cui J.Conductive tough hydrogels with a staggered ion-coordinating structure for high self-recovery rate.ACS Appl Mater Interfaces2019;11:24598-608

[30]

Jian Y,Zhang J,Zhou X.Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments.Mater Horiz2021;8:351-69

[31]

Mredha MTI,Cui J.Double-hydrophobic-coating through quenching for hydrogels with strong resistance to both drying and swelling.Adv Sci2020;7:1903145 PMCID:PMC7080539

[32]

Lu L,Liu J.Flexible PVDF based piezoelectric nanogenerators.Nano Energy2020;78:105251

[33]

Martins P,Lanceros-Mendez S.Electroactive phases of poly(vinylidene fluoride): determination, processing and applications.Prog Polym Sci2014;39:683-706

[34]

Song J,Zhu S.Processing bulk natural wood into a high-performance structural material.Nature2018;554:224-8

[35]

Wang S,Zhang L.Recent advances in regenerated cellulose materials.Prog Polym Sci2016;53:169-206

[36]

Rama Varma AV,Mredha MTI.All-glycerogel stretchable supercapacitor with stable performance in a wide temperature window from -20 to 80 °C.Chem Eng J2024;496:153856

[37]

Shahroudkolaei M, Mredha MTI, Chuang KC, Jeon I. Hofmeister-effect-driven hybrid glycerogels for perfect wide-temperature shape fixity and shape recovery in soft robotics applications.Small2024;20:e2400567

[38]

Mredha MTI,Gupta T.Water-triggered reconfigurable glycerogels for sustainable all-gel supercapacitors.Adv Sci2025;12:e2411847 PMCID:PMC11775550

[39]

Mredha MTI,Tran VT,Cui J.Anisotropic tough multilayer hydrogels with programmable orientation.Mater Horiz2019;6:1504-11

[40]

Mredha MTI,Nonoyama T,Kurokawa T.A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures.Adv Mater2018;30:1704937

[41]

Cai X,Sun D.A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR.RSC Adv2017;7:15382-9

[42]

Damjanovic D.Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics.Rep Prog Phys1998;61:1267-324

[43]

Gregorio R.Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions.J Appl Polym Sci2006;100:3272-9

[44]

Fukada E.History and recent progress in piezoelectric polymers.IEEE Trans Ultrason Ferroelectr Freq Control2000;47:1277-90

[45]

Rajala S,Sarlin E.Cellulose nanofibril film as a piezoelectric sensor material.ACS Appl Mater Interfaces2016;8:15607-14

[46]

Choi J,Lee M.High β-phase poly(vinylidene fluoride) using a thermally decomposable molecular splint.Adv Electron Mater2023;9:2200279

PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

/