Recent progress of photothermal catalysts for carbon dioxide conversion

Sang Hun Choi , Inhak Song , Wan Jae Dong

Energy Materials ›› 2025, Vol. 5 ›› Issue (6) : 500062

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (6) :500062 DOI: 10.20517/energymater.2024.227
Review

Recent progress of photothermal catalysts for carbon dioxide conversion

Author information +
History +
PDF

Abstract

Photothermal catalysis has emerged as a promising strategy for converting carbon dioxide (CO2) into value-added chemicals and fuels, offering a dual-energy approach that combines light and thermal energy to drive reactions under mild conditions. Photothermal effects are usually demonstrated by using plasmonic nanoparticles, which generate hot carriers and localized heating through light absorption. These effects facilitate chemical reactions by lowering activation barriers and increasing reaction rates. The synergy between hot carrier-induced redox reactions and thermocatalytic processes driven by localized heating allows for the activation of challenging reactions with reduced energy inputs. The balance between these pathways can be optimized through rational design of photothermal catalysts. In this review, we highlight recent advancements in catalyst materials, especially emphasizing the importance of photothermal effects to achieve higher efficiencies in CO2 conversion reactions such as CO2 hydrogenation and dry reforming of methane, both of which are vital for reducing greenhouse gases and producing clean fuels. Finally, the current challenges, outlook, and new strategies for catalyst optimization will be discussed to realize the full potential of photothermal catalysis in creating a sustainable and low-carbon energy future.

Keywords

Photothermal catalyst / plasmonic / carbon dioxide conversion / hydrogenation / dry methane reforming

Cite this article

Download citation ▾
Sang Hun Choi, Inhak Song, Wan Jae Dong. Recent progress of photothermal catalysts for carbon dioxide conversion. Energy Materials, 2025, 5(6): 500062 DOI:10.20517/energymater.2024.227

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sullivan I,Digdaya IA.Author correction: coupling electrochemical CO2 conversion with CO2 capture.Nat Catal2022;5:75-6

[2]

Dong WJ.One-dimensional III-nitrides: towards ultrahigh efficiency, ultrahigh stability artificial photosynthesis.J Mater Chem A2023;11:5427-59

[3]

Bushuyev OS,Dinh CT.What should we make with CO2 and how can we make it?.Joule2018;2:825-32

[4]

Zhang F,Qi M.Photothermal catalytic CO2 reduction over nanomaterials.Chem Catal2021;1:272-97

[5]

Liu H,Shi D.Recent progress on photothermal heterogeneous catalysts for CO2 conversion reactions.Energy Technol2022;10:2100804

[6]

Fan WK.Recent developments in photothermal reactors with understanding on the role of light/heat for CO2 hydrogenation to fuels: a review.Chem Eng J2022;427:131617

[7]

Luo S,Lin H,Ye J.Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects.Chem Sci2021;12:5701-19 PMCID:PMC8179669

[8]

Lv C,Ning S.Nanostructured materials for photothermal carbon dioxide hydrogenation: regulating solar utilization and catalytic performance.ACS Nano2023;17:1725-38

[9]

Cai M,An X.Supra-photothermal CO2 methanation over greenhouse-like plasmonic superstructures of ultrasmall cobalt nanoparticles.Adv Mater2024;36:e2308859

[10]

Meng X,Liu L.Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production.Angew Chem Int Ed2014;53:11478-82

[11]

Ren J,Xu H.Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system.Adv Energy Mater2017;7:1601657

[12]

Mateo D,García H.Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen.Appl Catal B Environ2018;224:563-71

[13]

Ali FM,O'brien PG.Highly efficient ambient temperature CO2 photomethanation catalyzed by nanostructured RuO2 on silicon photonic crystal support.Adv Energy Mater2018;8:1702277

[14]

Mateo D,García H.Titanium-perovskite-supported RuO2 nanoparticles for photocatalytic CO2 methanation.Joule2019;3:1949-62

[15]

Li Y,Song H.Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation.Nat Commun2019;10:2359 PMCID:PMC6541650

[16]

Mateo D,Maity P,Mohammed OF.Efficient visible-light driven photothermal conversion of CO2 to methane by nickel nanoparticles supported on barium titanate.Adv Funct Mater2021;31:2008244

[17]

Fu G,Liu J.Rh/Al nanoantenna photothermal catalyst for wide-spectrum solar-driven CO2 methanation with nearly 100% selectivity.Nano Lett2021;21:8824-30

[18]

Zhou L,Finzel J.Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts.Nat Energy2020;5:61-70

[19]

Tang Y,Bao W.Enhanced dry reforming of CO2 and CH4 on photothermal catalyst Ru/SrTiO3.Appl Catal B Environ2023;338:123054

[20]

Huang H,Zhang Q.Solar-light-driven CO2 reduction by CH4 on silica-cluster-modified Ni nanocrystals with a high solar-to-fuel efficiency and excellent durability.Adv Energy Mater2018;8:1702472

[21]

Zhang J,Jiang Y.Photoinducing different mechanisms on a Co-Ni bimetallic alloy in catalytic dry reforming of methane.ACS Catal2023;13:10855-65

[22]

Shoji S,Yamaguchi A.Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems.Nat Catal2020;3:148-53

[23]

Li Y,Wu T.Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane.Nat Commun2024;15:5495 PMCID:PMC11214624

[24]

Li Y,Liu H.In situ fabricating a Rh/Ga2O3 photothermal catalyst for dry reforming of methane.Catal Sci Technol2024;14:2722-9

[25]

Ulmer U,Duchesne PN.Fundamentals and applications of photocatalytic CO2 methanation.Nat Commun2019;10:3169 PMCID:PMC6639413

[26]

Feng K,Zhang D.Cobalt plasmonic superstructures enable almost 100% broadband photon efficient CO2 photocatalysis.Adv Mater2020;32:e2000014

[27]

Dong WJ,Lee JL.Abnormal dewetting of Ag layer on three-dimensional ITO branches to form spatial plasmonic nanoparticles for organic solar cells.Sci Rep2020;10:12819 PMCID:PMC7393491

[28]

Cho WS,Yu HK,Lee J.Simple and reversible method to control the surface energy of ITO branched nanowires for tuning wettability of micro/nanoscale droplets.App Surf Sci2025;679:161227

[29]

Zhang JZ.Plasmonic optical properties and applications of metal nanostructures.Plasmonics2008;3:127-50

[30]

Clavero C.Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices.Nat Photon2014;8:95-103

[31]

Brongersma ML,Nordlander P.Plasmon-induced hot carrier science and technology.Nat Nanotechnol2015;10:25-34

[32]

Zhang X,Liu RS.Plasmonic photocatalysis.Rep Prog Phys2013;76:046401

[33]

Kumar A,Kumar A,Krishnan V.Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis.Small2022;18:e2101638

[34]

DuChene JS,Welch AJ,Atwater HA.Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes.Nano Lett2018;18:2545-50

[35]

Jiang X,Bi Z.Plasmonic active “hot spots”-confined photocatalytic CO2 reduction with high selectivity for CH4 production.Adv Mater2022;34:e2109330

[36]

Baffou G.Thermo-plasmonics: using metallic nanostructures as nano-sources of heat.Laser Photonics Rev2013;7:171-87

[37]

Chen J,Yang F.Plasmonic nanostructures for photothermal conversion.Small Sci2021;1:2000055

[38]

Linic S,Boerigter C.Photochemical transformations on plasmonic metal nanoparticles.Nat Mater2015;14:567-76

[39]

Jiang W,Long R.Active site engineering on plasmonic nanostructures for efficient photocatalysis.ACS Nano2023;17:4193-229

[40]

Cai M,Li Z.Greenhouse-inspired supra-photothermal CO2 catalysis.Nat Energy2021;6:807-14

[41]

Coppens ZJ,Walker DG.Probing and controlling photothermal heat generation in plasmonic nanostructures.Nano Lett2013;13:1023-8

[42]

Mateo D,Durini S.Fundamentals and applications of photo-thermal catalysis.Chem Soc Rev2021;50:2173-210

[43]

Sun C,Liu H.Core-shell nanostructure for supra-photothermal CO2 catalysis.Rare Met2022;41:1403-5

[44]

Chen X,Yan M.Nanosecond photothermal effects in plasmonic nanostructures.ACS Nano2012;6:2550-7

[45]

Xiong Y,Gu D,Zhang W.Tunable C2 products via photothermal steam reforming of CO2 over surface-modulated mesoporous cobalt oxides.Nano Lett2023;23:4876-84

[46]

Tang X,Li H.Thermally stable Ni foam-supported inverse CeAlOx/Ni ensemble as an active structured catalyst for CO2 hydrogenation to methane.Nat Commun2024;15:3115 PMCID:PMC11006838

[47]

Li N,Yang B.Enhanced photocatalytic performance toward CO2 hydrogenation over nanosized TiO2-loaded Pd under UV irradiation.J Phys Chem C2017;121:2923-32

[48]

Deng B,Peng K,Ye J.Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction.Appl Catal B Environ2021;298:120519

[49]

Tang Y,Guo C.Ruthenium-cobalt solid-solution alloy nanoparticles for enhanced photopromoted thermocatalytic CO2 hydrogenation to methane.ACS Nano2024;18:11449-61

[50]

Peng K,Wang H.Natural halloysite nanotubes supported Ru as highly active catalyst for photothermal catalytic CO2 reduction.Appl Catal B Environ2023;324:122262

[51]

Ge H,Kusu K,Yamashita H.Ru/H MoO3- with plasmonic effect for boosting photothermal catalytic CO2 methanation.Appl Catal B Environ2022;317:121734

[52]

Du P,Li Z.Effective CO2 activation of enriched oxygen vacancies for photothermal CO2 methanation.J Mater Sci Technol2024;189:203-10

[53]

Zhai J,Zhou B.Photo-thermal coupling to enhance CO2 hydrogenation toward CH4 over Ru/MnO/Mn3O4.Nat Commun2024;15:1109 PMCID:PMC10847166

[54]

Guo C,Yang Z.Reinforcing the efficiency of photothermal catalytic CO2 methanation through integration of Ru nanoparticles with photothermal MnCo2O4 nanosheets.ACS Nano2023;17:23761-71

[55]

Zhu X,Pérez CJV.Supercharged CO2 photothermal catalytic methanation: high conversion, rate, and selectivity.Angew Chem Int Ed2023;135:e202218694

[56]

Li Q,Wang H,Chen J.Disclosing support-size-dependent effect on ambient light-driven photothermal CO2 hydrogenation over nickel/titanium dioxide.Angew Chem Int Ed2024;136:e202318166

[57]

Vrijburg WL,Chen W.Efficient base-metal NiMn/TiO2 catalyst for CO2 methanation.ACS Catal2019;9:7823-39

[58]

Guo J,Wang L.High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO2 reduction.ACS Catal2020;10:13668-81

[59]

Zhao J,Shi R.FeO-CeO2 nanocomposites: an efficient and highly selective catalyst system for photothermal CO2 reduction to CO.NPG Asia Mater2020;12:171

[60]

Lou D,Fang Y.Cobalt-sputtered anodic aluminum oxide membrane for efficient photothermal CO2 hydrogenation.ChemNanoMat2021;7:1008-12

[61]

Zhao Z,Ye Y,Huang Z.Visible light-enhanced photothermal CO2 hydrogenation over Pt/Al2O3 catalyst.Chin J Catal2020;41:286-93

[62]

Tang Y,Wang Y.Photo-Assisted Catalytic CO2 hydrogenation to CO with nearly 100% selectivity over Rh/TiO2 catalysts.Energy Fuels2023;37:539-46

[63]

Yang Z,Tang Y.Size-modulated photo-thermal catalytic CO2 hydrogenation performances over Pd nanoparticles.J Catal2023;424:22-8

[64]

Su X,Zhao B.Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions.J Energy Chem2017;26:854-67

[65]

Lu B,Sun Z,Zhang L.Photothermal reverse-water-gas-shift over Au/CeO2 with high yield and selectivity in CO2 conversion.Catal Commun2019;129:105724

[66]

Wang L,Yan T.Black indium oxide a photothermal CO2 hydrogenation catalyst.Nat Commun2020;11:2432 PMCID:PMC7229034

[67]

Peng Y,Nikacevic P.Co-doped hydroxyapatite as photothermal catalyst for selective CO2 hydrogenation.Appl Catal B Environ2023;333:122790

[68]

Wang J,Zhao J,Jiang B.Boron-doped Cu-Co catalyst boosting charge transfer in photothermal carbon dioxide hydrogenation.Appl Catal B Environ Energy2024;352:124045

[69]

Tan W,Zhang X.Fine-tuning of Pt dispersion on Al2O3 and understanding the nature of active Pt sites for efficient CO and NH3 oxidation reactions.ACS Appl Mater Interfaces2024;16:454-66

[70]

Kiss AA,Vos H,de Groot M.Novel efficient process for methanol synthesis by CO2 hydrogenation.Chem Eng J2016;284:260-9

[71]

Barberis L,Plessow PN.Competition between reverse water gas shift reaction and methanol synthesis from CO2: influence of copper particle size.Nanoscale2022;14:13551-60

[72]

Wang Z,Pang H.Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts.Appl Catal B Environ2019;250:10-6

[73]

Deng B,Wang Q.Highly efficient and stable photothermal catalytic CO2 hydrogenation to methanol over Ru/In2O3 under atmospheric pressure.Appl Catal B Environ2023;327:122471

[74]

Xie B,Tan TH.Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina.Nat Commun2020;11:1615 PMCID:PMC7109065

[75]

Wu D,Hu B,Liu G.Plasmon-assisted photothermal catalysis of low-pressure CO2 hydrogenation to methanol over Pd/ZnO catalyst.ChemCatChem2019;11:1598-601

[76]

Zhang G,Huang H.Ni-doped In2O3 photothermal coupling catalyzed boosted carbon dioxide hydrogenation to methanol.Ind Eng Chem Res2024;63:968-79

[77]

Wang L,Wang H.Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure.Joule2018;2:1369-81

[78]

Zhang Z,Meira DM.New black indium oxide - tandem photothermal CO2-H2 methanol selective catalyst.Nat Commun2022;13:1512 PMCID:PMC8938479

[79]

Xie T,Zheng H,Hu Z.Enhanced photothermal catalytic performance of dry reforming of methane over Ni/mesoporous TiO2 composite catalyst.Chem Eng J2022;429:132507

[80]

Han K,Wang S,Deng Z.Narrowing band gap energy of CeO2 in (Ni/CeO2)@SiO2 catalyst for photothermal methane dry reforming.Chem Eng J2021;421:129989

[81]

Takami D,Sarwana W,Yoshida H.Photothermal dry reforming of methane over phyllosilicate-derived silica-supported nickel catalysts.ACS Appl Energy Mater2023;6:7627-35

[82]

Hu B,Zhou W.Synergistic effect of Ru single atom and nanoparticle on photothermal methane dry reforming reaction.Chem Eng Sci2024;297:120308

[83]

Yang Y,Qin X.Light-induced redox looping of a rhodium/CexWO3 photocatalyst for highly active and robust dry reforming of methane.Angew Chem Int Ed2022;61:e202200567

[84]

Liu H,Zhou W,Ye J.A promising application of optical hexagonal TaN in photocatalytic reactions.Angew Chem Int Ed2018;130:17023-6

[85]

Rao Z,Cao Y.Light-reinforced key intermediate for anticoking to boost highly durable methane dry reforming over single atom Ni active sites on CeO2.J Am Chem Soc2023;145:24625-35

[86]

Xiong H,Hu C.Highly efficient and selective light-driven dry reforming of methane by a carbon exchange mechanism.J Am Chem Soc2024;146:9465-75

[87]

Tavasoli A,Zähringer T.Enhanced hybrid photocatalytic dry reforming using a phosphated Ni-CeO2 nanorod heterostructure.Nat Commun2023;14:1435 PMCID:PMC10015045

[88]

Li Q,Zhang M,Chen J.Suppressive strong metal-support interactions on ruthenium/TiO2 promote light-driven photothermal CO2 reduction with methane.Angew Chem Int Ed2023;135:e202300129

[89]

Rao Z,Huang Z.Insights into the nonthermal effects of light in dry reforming of methane to enhance the H2/CO ratio near unity over Ni/Ga2O3.ACS Catal2021;11:4730-8

[90]

Takami D,Kato K,Yoshida H.Transient temperature response of supported Rh nanoparticles in photothermal dry reforming of methane - an Operando dispersive X-ray absorption spectroscopy study.J Phys Chem C2022;126:15736-43

[91]

Zhang J,Sun J.Regulation of energetic hot carriers on Pt/TiO2 with thermal energy for photothermal catalysis.Appl Catal B Environ2022;309:121263

[92]

He C,Ye Z.Regulating atomically-precise Pt sites for boosting light-driven dry reforming of methane.Angew Chem Int Ed2024;63:e202412308

PDF

218

Accesses

0

Citation

Detail

Sections
Recommended

/