Towards practical all-solid-state batteries: structural engineering innovations for sulfide-based solid electrolytes

Jihun Roh , Namgyu Do , Hyungjin Lee , Sangki Lee , Jangwook Pyun , Seung-Tae Hong , Munseok S. Chae

Energy Materials ›› 2025, Vol. 5 ›› Issue (6) : 500061

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (6) :500061 DOI: 10.20517/energymater.2024.219
Review

Towards practical all-solid-state batteries: structural engineering innovations for sulfide-based solid electrolytes

Author information +
History +
PDF

Abstract

Sulfide-based solid electrolytes have emerged as pivotal components for the advancement of next-generation all-solid-state batteries, owing to the battery safety and higher energy density. This paper reviews the recent material innovations in sulfide-based solid electrolytes, focusing on enhancing their ionic conductivities based on an understanding of their crystal structures. Through a comprehensive analysis of current research trends and future perspectives, this review aims to provide a roadmap for the development of more robust and efficient sulfide-based solid electrolytes, which contribute to the realization of safer and higher-performance all-solid-state batteries.

Keywords

All-solid-state batteries / sulfide solid electrolyte / super ionic conductor / thio-germanate

Cite this article

Download citation ▾
Jihun Roh, Namgyu Do, Hyungjin Lee, Sangki Lee, Jangwook Pyun, Seung-Tae Hong, Munseok S. Chae. Towards practical all-solid-state batteries: structural engineering innovations for sulfide-based solid electrolytes. Energy Materials, 2025, 5(6): 500061 DOI:10.20517/energymater.2024.219

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Frith JT,Ulissi U.A non-academic perspective on the future of lithium-based batteries.Nat Commun2023;14:420 PMCID:PMC9879955

[2]

Blomgren GE.The development and future of lithium ion batteries.J Electrochem Soc2017;164:A5019-25

[3]

Jung H,Han M.Scaling trends of electric vehicle performance: driving range, fuel economy, peak power output, and temperature effect.World Electr Veh J2018;9:46

[4]

Li H.Practical evaluation of Li-ion batteries.Joule2019;3:911-4

[5]

Cao W,Li H.Batteries with high theoretical energy densities.Energy Storage Mater2020;26:46-55

[6]

USCAR. Development of advanced high-performance batteries for electric vehicle (EV) applications. Available from: https://uscar.org/publications/. [Last accessed on 28 Feb 2025]

[7]

Kong L,Jiang J.Li-ion battery fire hazards and safety strategies.Energies2018;11:2191

[8]

Chen Y,Zhao Y.A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards.J Energy Chem2021;59:83-99

[9]

Liang Y,Yuan H.A review of rechargeable batteries for portable electronic devices.InfoMat2019;1:6-32

[10]

Xu K.Nonaqueous liquid electrolytes for lithium-based rechargeable batteries.Chem Rev2004;104:4303-418

[11]

Hess S,Wachtler M.Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements.J Electrochem Soc2015;162:A3084-97

[12]

Kamaya N,Yamakawa Y.A lithium superionic conductor.Nat Mater2011;10:682-6

[13]

Kato Y,Saito T.High-power all-solid-state batteries using sulfide superionic conductors.Nat Energy2016;1:16030

[14]

Swiderska-mocek A,Rudnicka E.Flammability parameters of lithium-ion battery electrolytes.J Mol Liq2020;318:113986

[15]

Stallworth P,Wintersgill M.NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes.J Power Sources1999;81-82:739-47

[16]

Cao D,Li Q,Xiang P.Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations.Matter2020;3:57-94

[17]

Sastre J,Pompizi L.Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li-La-Zr-O solid electrolyte.Commun Mater2021;2:177

[18]

Jung K,Park M.Solid-state lithium batteries: bipolar design, fabrication, and electrochemistry.ChemElectroChem2019;6:3842-59

[19]

Tan DH,Jang J.Scaling up high-energy-density sulfidic solid-state batteries: a lab-to-pilot perspective.Joule2022;6:1755-69

[20]

Li Y,Kim H.A lithium superionic conductor for millimeter-thick battery electrode.Science2023;381:50-3

[21]

Ohno S,Buchheim J.How certain are the reported Ionic conductivities of thiophosphate-based solid electrolytes?.ACS Energy Lett2020;5:910-5

[22]

Murugan R,Weppner W.Fast lithium ion conduction in garnet-type Li7La3Zr2O12.Angew Chem Int Ed2007;46:7778-81

[23]

Deiseroth HJ,Eckert H.Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility.Angew Chem Int Ed2008;47:755-8

[24]

Zhou L,Zhang Q,Nazar LF.New family of argyrodite thioantimonate lithium superionic conductors.J Am Chem Soc2019;141:19002-13

[25]

Huang W,Hori S.Anomalously high ionic conductivity of Li2SiS3-type conductors.J Am Chem Soc2022;144:4989-94

[26]

Liu Z,Payzant EA.Anomalous high ionic conductivity of nanoporous β-Li3PS4.J Am Chem Soc2013;135:975-8

[27]

Homma K,Kobayashi T,Hirayama M.Crystal structure and phase transitions of the lithium ionic conductor Li3PS4.Solid State Ionics2011;182:53-8

[28]

Lee Y,Lee HJ.Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-ion batteries.ACS Energy Lett2022;7:171-9

[29]

Sakuda A,Tatsumisago M.Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery.Sci Rep2013;3:2261 PMCID:PMC3719077

[30]

Reddy MV,Mauger A.Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: a review.Nanomaterials2020;10:1606 PMCID:PMC7466729

[31]

Kotobuki M,Kanamura K,Yoshida T.Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode.J Electrochem Soc2010;157:A1076

[32]

Kim KH,Yamamoto K.Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery.J Power Sources2011;196:764-7

[33]

Kwak H,Han D.Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries.Nat Commun2023;14:2459 PMCID:PMC10147626

[34]

Seino Y,Takada K,Tatsumisago M.A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries.Energy Environ Sci2014;7:627-31

[35]

Kwak H,Lyoo J.New cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-substituted Li2ZrCl6.Adv Energy Mater2021;11:2003190

[36]

Kraft MA,Calderon M.Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I).J Am Chem Soc2017;139:10909-18

[37]

Bron P,Zick K,Dehnen S.Li10SnP2S12: an affordable lithium superionic conductor.J Am Chem Soc2013;135:15694-7

[38]

Takada K,Kondo S.Electrochemical behaviors of Li+ ion conductor, Li3PO4-Li2S-SiS2.J Power Sources1993;43:135-41

[39]

Basu B,Paul A.Lithium ion conductivity in the system Li4SiO4-Li3VO4.Trans the Indian Ceram Soc1985;44:97-100

[40]

Lim H,Kim J,Kim S.Structure of Li5AlS4 and comparison with other lithium-containing metal sulfides.J Solid State Chem2018;257:19-25

[41]

Roh J,Lee H.Unraveling polymorphic crystal structures of Li4SiS4 for all-solid-state batteries: enhanced ionic conductivity via aliovalent sb substitution.Chem Mater2024;36:6973-84

[42]

Kimura T,Sakuda A,Hayashi A.Structures and conductivities of stable and metastable Li5GaS4 solid electrolytes.RSC Adv2021;11:25211-6 PMCID:PMC9036980

[43]

Murayama M,Kawamoto Y.Structure of the thio-LISICON, Li4GeS4.Solid State Ionics2002;154-155:789-94

[44]

Kaib T,Kapitein M.New lithium chalcogenidotetrelates, LiChT: synthesis and characterization of the Li+-conducting tetralithium ortho- sulfidostannate Li4SnS4.Chem Mater2012;24:2211-9

[45]

Kimura T,Hotehama C,Hayashi A.Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes.Solid State Ionics2019;333:45-9

[46]

Ahn BT.Synthesis and lithium conductivities of Li2SiS3 and Li4SiS4.Mater Res Bull1989;24:889-97

[47]

Menetrier M,Estournes C.Ionic conduction in the B2S3-Li2S glass system.Solid State Ionics1991;48:325-30

[48]

Hayashi A,Hama S.Lithium ion conducting glasses and glass-ceramics in the systems Li2S-MxSy (M=Al, Si and P) prepared by mechanical milling.J Ceram Soc Jpn2004;S695-9

[49]

Souquet J,Barrau B.Glass formation and ionic conduction in the M2S GeS2 (M = Li, Na, Ag) systems.Solid State Ionics1981;3-4:317-21

[50]

Zhang J,He C.Effects of different glass formers on Li2S-P2S5-MS2 (M = Si, Ge, Sn) chalcogenide solid-state electrolytes.J Am Ceram Soc2023;106:354-64

[51]

Nagamedianova Z.Preparation and thermal properties of novel Li2S-Sb2S3 glassy system.J Non-Cryst Solids2002;311:1-9

[52]

Souquet JL.Ionic transport in amorphous solid electrolytes.Annu Rev Mater Sci1981;11:211-31

[53]

Minami K,Tatsumisago M.Crystallization process for superionic Li7P3S11 glass-ceramic electrolytes: superionic Li7P3S11 glass-ceramic electrolytes.J Am Ceram Soc2011;94:1779-83

[54]

Zhou L,Zeier WG.Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries.Acc Chem Res2021;54:2717-28

[55]

Wang Y,Ong SP.Design principles for solid-state lithium superionic conductors.Nat Mater2015;14:1026-31

[56]

Tilley RJD.Defects in solids. John Wiley & Sons; 2008. p. 1-552.

[57]

Zhang Q,Ma Y,Aurora P.Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries.Adv Mater2019;31:1901131

[58]

Ohno S,Dewald GF.Materials design of ionic conductors for solid state batteries.Prog Energy2020;2:022001

[59]

Tuller HL. Ceramic materials for electronics. 3th ed. Boca Raton: CRC Press; 2004. p. 692. Available from: https://doi.org/10.1201/9781315273242. [Last accessed on 28 Feb 2025]

[60]

Wang C,Zhang X.Ion hopping: design principles for strategies to improve ionic conductivity for inorganic solid electrolytes.Small2022;18:2107064

[61]

Zhang Z.Synthesis and characterization of the B2S3 Li2S, the P2S5 Li2S and the B2S3 P2S5 Li2S glass systems.Solid State Ionics1990;38:217-24

[62]

Dietrich C,Sedlmaier SJ.Lithium ion conductivity in Li2S-P2S5 glasses - building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7.J Mater Chem A2017;5:18111-9

[63]

Mercier R,Fahys B.Superionic conduction in Li2S-P2S5-LiI- glasses.Solid State Ionics1981;5:663-6

[64]

Yamauchi A,Hayashi A.Preparation and ionic conductivities of (100 - x)(0.75Li2S·0.25P2S5xLiBH4 glass electrolytes.J Power Sources2013;244:707-10

[65]

Park KH,Choi YE.Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries.Adv Mater2016;28:1874-83

[66]

Shao Y,He C.Ultra-long cycling life Li2S-P2S5-B2S3 solid electrolyte via LiI doping.Ceram Int2024;50:31032-9

[67]

Kennedy J,Shea S.Preparation and conductivity measurements of SiS2 Li2S glasses doped with LiBr and LiCl.Solid State Ionics1986;18-19:368-71

[68]

Hao X,Zhao F.Regulating ion diffusion and stability in amorphous thiosilicate‐based solid electrolytes through edge‐sharing local structures.Adv Energy Mater2024;14:2304556

[69]

Kimura T,Izawa R.Stabilizing high-temperature α-Li3PS4 by rapidly heating the glass.J Am Chem Soc2023;145:14466-74

[70]

Hori S,Hirayama M.Synthesis, structure, and ionic conductivity of solid solution, Li10+δM1+δP2-δS12 (M = Si, Sn).Faraday Discuss2014;176:83-94

[71]

Roh J,Manjón-Sanz A.Li2GeS3: lithium ionic conductor with an unprecedented structural type.Inorg Chem2023;62:15856-63

[72]

Taeahn B.Phase behavior and conductivity of Li2SiS3 composition.Solid State Ionics1991;46:237-42

[73]

Brant JA,Holzwarth NAW.Fast lithium ion conduction in Li2SnS3: synthesis, physicochemical characterization, and electronic structure.Chem Mater2015;27:189-96

[74]

Kanno R,Kawamoto Y.Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system.Solid State Ionics2000;130:97-104

[75]

Tatsumisago M,Hayashi A.All-solid-state lithium secondary batteries using sulfide-based glass-ceramic electrolytes.J Power Sources2006;159:193-9

[76]

Rao RP.Studies of lithium argyrodite solid electrolytes for all-solid-state batteries.Physica Status Solidi (a)2011;208:1804-7

[77]

Adeli P,Park KH.Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution.Angew Chem Int Ed2019;58:8681-6

[78]

Wang P,Patel S.Fast ion conduction and its origin in Li6-xPS5-xBr1+x.Chem Mater2020;32:3833-40

[79]

Hogrefe K,Hanghofer I,Zeier WG.Opening diffusion pathways through site disorder: the interplay of local structure and ion dynamics in the solid electrolyte Li6+xP1-xGexS5I as probed by neutron diffraction and NMR.J Am Chem Soc2022;144:1795-812 PMCID:PMC8815078

[80]

Warburg E.Ueber die electrolyse des festen glases.Ann Phys1884;257:622-46

[81]

Bih L.Electronic and ionic conductivity of glasses inside the Li2O-MoO3-P2O5 system.Solid State Ionics132:71-85

[82]

Tatsumisago M,Machida N.Ionic conductivity of rapidly quenched glasses with high concentration of lithium ions.J Non-Cryst Solids1987;95-96:857-64

[83]

Rogez J,Garnier A,Schäf O.Determination of the crystallization enthalpies of lithium ion conducting alumino-silicate glasses.J Non-Cryst Solids2000;262:177-82

[84]

Ohara K,Mori M.Structural and electronic features of binary Li2S-P2S5 glasses.Sci Rep2016;6:21302 PMCID:PMC4759574

[85]

Morimoto H,Tatsumisago M.Mechanochemical synthesis of new amorphous materials of 60Li2S·40SiS2 with high lithium ion conductivity.J Am Ceram Soc1999;82:1352-4

[86]

Jiusti J,Feller SA.Effect of network formers and modifiers on the crystallization resistance of oxide glasses.J Non-Cryst Solids2020;550:120359

[87]

Lee B,Ouyang B.Weak correlation between the polyanion environment and ionic conductivity in amorphous Li-P-S superionic conductors.Chem Mater2023;35:891-9

[88]

Hayashi A,Minami T.Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses.Electrochem Commun2003;5:111-4

[89]

Dietrich C,Culver S.Synthesis, structural characterization, and lithium ion conductivity of the lithium thiophosphate Li2P2S6.Inorg Chem2017;56:6681-7

[90]

Yamane H,Shimane Y.Crystal structure of a superionic conductor, Li7P3S11.Solid State Ionics2007;178:1163-7

[91]

Kong ST,Koch B,Eckert H.Structural characterisation of the Li argyrodites Li7PS6 and Li7PSe6 and their solid solutions: quantification of site preferences by MAS-NMR spectroscopy.Chemistry2010;16:5138-47

[92]

Neuberger S,Eckert H,Schmedt Auf der Günne J.Refinement of the crystal structure of Li4P2S6 using NMR crystallography.Dalton Trans2018;47:11691-5

[93]

Dietrich C,Sicolo S.Local structural investigations, defect formation, and ionic conductivity of the lithium ionic conductor Li4P2S6.Chem Mater2016;28:8764-73

[94]

Mizuno F,Tadanaga K.High lithium ion conducting glass-ceramics in the system Li2S-P2S5.Solid State Ionics2006;177:2721-5

[95]

Wang S,Liu Y.Design principles for sodium superionic conductors.Nat Commun2023;14:7615 PMCID:PMC10665354

[96]

He X,Mo Y.Origin of fast ion diffusion in super-ionic conductors.Nat Commun2017;8:15893 PMCID:PMC5482052

[97]

Park KH,Kim DH.Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all‐solid‐state batteries.Adv Energy Mater2018;8:1800035

[98]

Bachman JC,Grimaud A.Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction.Chem Rev2016;116:140-62

[99]

Oxley BM,Ie TS.Structure, second-, and third-harmonic generation of Li4P2S6: a wide gap material with a high laser-induced damage threshold.Chem Mater2023;35:7322-32

[100]

Lyoo J,Hyoung J,Hong S.Zn substituted Li4P2S6 as a solid lithium-ion electrolyte for all-solid-state lithium batteries.J Solid State Chem2023;320:123861

[101]

Eckert H,Kennedy JH.Structural transformation of non-oxide chalcogenide glasses. The short-range order of lithium sulfide (Li2S)-phosphorus pentasulfide (P2S5) glasses studied by quantitative phosphorus-31, lithium-6, and lithium-7 high-resolution solid-state NMR.Chem Mater1990;2:273-9

[102]

Mercier R,Fahys B,Robert G.Synthese, structure cristalline et analyse vibrationnelle de l’hexathiohypodiphosphate de lithium Li4P2S6.J Solid State Chem1982;43:151-62

[103]

Hood ZD,Kirkham M,Liang C.Structural and electrolyte properties of Li4P2S6.Solid State Ionics2016;284:61-70

[104]

Yahia H, Motohashi K, Mori S, Sakuda A, Hayashi A. Twinned single crystal structure of Li4P2S6.Z Kristallogr Cryst Mater2023;238:209-16

[105]

Mizuno F,Tadanaga K.New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses.Adv Mater2005;17:918-21

[106]

Tatsumisago M,Hayashi A.Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries.J Asian Ceram Soc2013;1:17-25

[107]

Murakami M,Shiotani S.Dynamical origin of ionic conductivity for Li7P3S11 metastable crystal as studied by 6/7Li and 31P solid-state NMR.J Phys Chem C2015;119:24248-54

[108]

Chang D,Kim SJ.Super-ionic conduction in solid-state Li7P3S11-type sulfide electrolytes.Chem Mater2018;30:8764-70

[109]

Brinkmann C,Wilmer D.Re-entrant phase transition of the crystalline ion conductor Ag7P3S11.Solid State Sci2004;6:1077-88

[110]

Onodera Y,Otomo T.Crystal structure of Li7P3S11 studied by neutron and synchrotron X-ray powder diffraction.J Phys Soc Jpn2010;79:87-9

[111]

Mori K,Iwase K.Visualization of conduction pathways in lithium superionic conductors: Li2S-P2S5 glasses and Li7P3S11 glass-ceramic.Chem Phys Lett2013;584:113-8

[112]

Mori K,Murata S.Direct observation of fast lithium-ion diffusion in a superionic conductor: Li7P3S11 metastable crystal.Phys Rev Applied2015;4

[113]

Xiong K,Kc S,Cho K.Behavior of Li defects in solid electrolyte lithium thiophosphate Li7P3S11: a first principles study.Comput Mater Sci2014;90:44-9

[114]

Hong H.Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors.Mater Res Bull1978;13:117-24

[115]

Tao B,Li H.Thio-/LISICON and LGPS-type solid electrolytes for all-solid-state lithium-ion batteries.Adv Funct Mater2022;32:2203551

[116]

Zhou L,Shyamsunder A.An entropically stabilized fast-ion conductor: Li3.25[Si0.25P0.75]S4.Chem Mater2019;31:7801-11

[117]

Roh J,Hong S.Enhanced Li-ion conductivity and air stability of sb-substituted Li4GeS4 toward all-solid-state Li-ion batteries.ACS Appl Energy Mater2023;6:5446-55

[118]

Kaup K,Huq A.Impact of the Li substructure on the diffusion pathways in alpha and beta Li3PS4: an in situ high temperature neutron diffraction study.J Mater Chem A2020;8:12446-56

[119]

Kanazawa K,Hotehama C.Mechanochemical synthesis and characterization of metastable hexagonal Li4SnS4 solid electrolyte.Inorg Chem2018;57:9925-30

[120]

Tachez M,Mercier R.Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4.Solid State Ionics1984;14:181-5

[121]

Kim JS,Choi S.Thermally induced s-sublattice transition of Li3PS4 for fast lithium-ion conduction.J Phys Chem Lett2018;9:5592-7

[122]

Jun K,L Kam R.The nonexistence of a paddlewheel effect in superionic conductors.Proc Natl Acad Sci U S A2024;121:e2316493121 PMCID:PMC11067015

[123]

Smith JG.Low-temperature paddlewheel effect in glassy solid electrolytes.Nat Commun2020;11:1483 PMCID:PMC7083903

[124]

Zhang Z,Kaup K,Roy P.Targeting superionic conductivity by turning on anion rotation at room temperature in fast ion conductors.Matter2020;2:1667-84

[125]

Kuhn A,Nuss J.A facile wet chemistry approach towards unilamellar tin sulfide nanosheets from Li4xSn1-xS2 solid solutions.J Mater Chem A2014;2:6100-6

[126]

Winkler C.Germanium, Ge, ein neues, nichtmetallisches element.Ber Dtsch Chem Ges1886;19:210-1

[127]

Geller S.The crystal structure of y Ag8GeTe6, a potential mixed electronic-ionic conductor.Z Kristallogr Cryst Mater1979;149:31-48

[128]

Belin R,Zerouale A,Ribes M.Crystal structure of the non-stoichiometric argyrodite compound Ag7-xGeSe5I1-x (x=0.31). A highly disordered silver superionic conducting material.Solid State Sci2001;3:251-65

[129]

Kuhs WF,Scheunemann K.The crystal structure of Cu6PS5Br, a new superionic conductor.Acta Crystallogr B Struct Sci1978;34:64-70

[130]

Kuhs W,Scheunemann K.The argyrodites - a new family of tetrahedrally close-packed structures.Mater Res Bull1979;14:241-8

[131]

Kong ST,Reiner C.Lithium argyrodites with phosphorus and arsenic: order and disorder of lithium atoms, crystal chemistry, and phase transitions.Chemistry2010;16:2198-206

[132]

Deiseroth H,Weichert K,Kong S.Li7PS6 and Li6PS5X (X: Cl, Br, I): possible three-dimensional diffusion pathways for lithium ions and temperature dependence of the ionic conductivity by impedance measurements.Z Anorg Allge Chem2011;637:1287-94

[133]

Gautam A,Ghidiu M.Engineering the site-disorder and lithium distribution in the lithium superionic argyrodite Li6PS5Br.Adv Energy Mater2021;11:2003369

[134]

Shannon RD.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.Acta Cryst A1976;32:751-67

[135]

Zhou L,Nazar LF.Li-rich and halide-deficient argyrodite fast Ion conductors.Chem Mater2022;34:9634-43

[136]

Schlem R,Culver SP,Zeier WG.Correction to changing the static and dynamic lattice effects for the improvement of the ionic transport properties within the argyrodite Li6PS5-xSexI.ACS Appl Energy Mater2020;3:4089-90

[137]

Morgan BJ.Mechanistic origin of superionic lithium diffusion in anion-disordered Li6PS5 X argyrodites.Chem Mater2021;33:2004-18 PMCID:PMC8029578

[138]

Hanghofer I,Eisbacher SL.Substitutional disorder: structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I.Phys Chem Chem Phys2019;21:8489-507

[139]

Ohno S,Fuchs T.Further evidence for energy landscape flattening in the superionic argyrodites Li6+xP1-xMxS5I (M = Si, Ge, Sn).Chem Mater2019;31:4936-44

[140]

Rayavarapu PR,Peterson VK.Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes.J Solid State Electrochem2012;16:1807-13

[141]

Kraft MA,Zinkevich T.Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries.J Am Chem Soc2018;140:16330-9

[142]

Rice M.Ionic transport in super ionic conductors: a theoretical model.J Solid State Chem1972;4:294-310

[143]

Kanno R.Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system.J Electrochem Soc2001;148:A742

[144]

Kuhn A,Lotsch BV.Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12.Phys Chem Chem Phys2013;15:11620-2

[145]

Kato Y,Kanno R.Li10GeP2S12-type superionic conductors: synthesis, structure, and ionic transportation.Adv Energy Mater2020;10:2002153

[146]

Culver SP,Minafra N.Evidence for a solid-electrolyte inductive effect in the superionic conductor Li10Ge1-xSnxP2S12.J Am Chem Soc2020;142:21210-9

PDF

264

Accesses

0

Citation

Detail

Sections
Recommended

/