Heterogeneous nanoporous organic frameworks-based catalysts for electrochemical CO2 reduction reaction

Yajuan Ma , Guangjin Zhang , Qiuhan Yu , Shuai Lyu , Xiaoguang Duan , Shiming Zhang

Energy Materials ›› 2025, Vol. 5 ›› Issue (6) : 500053

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (6) :500053 DOI: 10.20517/energymater.2024.215
Review

Heterogeneous nanoporous organic frameworks-based catalysts for electrochemical CO2 reduction reaction

Author information +
History +
PDF

Abstract

Converting captured carbon dioxide (CO2) into valuable chemicals and fuels through electrocatalysis and realizing the anthropogenic closed-carbon cycle can provide new solutions to environmental and energy problems. Nanoporous organic frameworks, including metal-organic frameworks (MOFs) and porous organic polymers (POPs), as a class of potential electrocatalysts, have made great progress in CO2 reduction reaction due to their high porosity, large specific surface area, and structural/functionalization diversity. In this review, the recent developments in pristine MOFs/POPs, MOFs/POPs composite, and MOFs-/POPs-derived catalysts are discussed from aspects of catalyst design, synthesis strategy, test techniques, performance validation, active sites, and basic mechanism. We further summarize the challenges and prospects of MOFs/POPs-based materials in practical applications for CO2 reduction reactions and point out the potential paths of future research. This review can provide a comprehensive reference for the advanced design and systematic cognition of efficient nanoporous organic framework catalysts for electrocatalytic CO2 reduction.

Keywords

Metal organic frameworks / porous organic polymers / electrochemical CO2 reduction reaction / high porosity / structural/functionalization diversity

Cite this article

Download citation ▾
Yajuan Ma, Guangjin Zhang, Qiuhan Yu, Shuai Lyu, Xiaoguang Duan, Shiming Zhang. Heterogeneous nanoporous organic frameworks-based catalysts for electrochemical CO2 reduction reaction. Energy Materials, 2025, 5(6): 500053 DOI:10.20517/energymater.2024.215

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cui X,Wang Y.Room-temperature methane conversion by graphene-confined single iron atoms.Chem2018;4:1902-10

[2]

Daiyan R,Masood H,Lu X.A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value-added chemicals and fuel.Adv Energy Mater2020;10:1902106

[3]

He H,Zhu G.Metal-organic frameworks for CO2 chemical transformations.Small2016;12:6309-24

[4]

Wang F,Jarvis M,Trytten L.CO2 mineralization and concurrent utilization for nickel conversion from nickel silicates to nickel sulfides.Chem Eng J2021;406:126761

[5]

Zhai T,Gu F,Liu W.Dopamine/polyethylenimine-modified silica for enzyme immobilization and strengthening of enzymatic CO2 conversion.ACS Sustain Chem Eng2020;8:15250-7

[6]

Ma Y,Wang S.Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2.Nat Commun2022;13:1400 PMCID:PMC8930982

[7]

Sun S,Liu F.Recent advances in nanoscale engineering of Pd-based electrocatalysts for selective CO2 electroreduction to formic acid/formate.Energy Mater2024;4:400027

[8]

Feng D,Guo H.Conjugated polyimides modified self-supported carbon electrodes for electrochemical conversion of CO2 to CO.Energy Mater2024;4:400069

[9]

Xu D,Jia B.Electrocatalytic CO2 reduction towards industrial applications.Carbon Energy2023;5:e230

[10]

Liu A,Ren X.Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts.J Mater Chem A2020;8:3541-62

[11]

Zhou L.Rational catalyst design and interface engineering for electrochemical CO2 reduction to high-valued alcohols.J Energy Chem2022;70:310-31

[12]

He J,Huang A,Li C.Electrolyzer and catalysts design from carbon dioxide to carbon monoxide electrochemical reduction.Electrochem Energy Rev2021;4:680-717

[13]

Bushuyev OS,Dinh CT.What should we make with CO2 and how can we make it?.Joule2018;2:825-32

[14]

Fu Y,Wan L,Luo J.Ethanol assisted cyclic voltammetry treatment of copper for electrochemical CO2 reduction to ethylene.Mater Today Energy2022;29:101105

[15]

Zhang Z,Zhang Z.A review on electrocatalytic CO2 conversion via C-C and C-N coupling.Carbon Energy2024;6:e513

[16]

Saha P,Dey A.Selectivity in electrochemical CO2 reduction.ACC Chem Res2022;55:134-44

[17]

Overa S,Zhao Y.Electrochemical approaches for CO2 conversion to chemicals: a journey toward practical applications.ACC Chem Res2022;55:638-48

[18]

Liu C,Han C,Song P.Tuning strategies and structure effects of electrocatalysts for carbon dioxide reduction reaction.Chin J Catal2022;43:1618-33

[19]

Zhang MD,Yi JD,Huang YB.Conductive phthalocyanine-based covalent organic framework for highly efficient electroreduction of carbon dioxide.Small2020;16:e2005254

[20]

Xue Y,Cui H.Catalyst design for electrochemical reduction of CO2 to multicarbon products.Small Methods2021;5:e2100736

[21]

Liang F,Zhang L,Lei Y.Recent development of electrocatalytic CO2 reduction application to energy conversion.Small2021;17:e2100323

[22]

Dai S,Liu WI.Enhanced CO2 electrochemical reduction performance over Cu@AuCu catalysts at high noble metal utilization efficiency.Nano Lett2021;21:9293-300

[23]

Liu L,Li M.Alloy catalysts for electrocatalytic CO2 reduction.Small Methods2023;7:e2300482

[24]

Bui TS,Daiyan R.Defective metal oxides: lessons from CO2RR and applications in NOxRR.Adv Mater2023;35:e2205814

[25]

Zhao X,Liu M.Built-in electric field promotes interfacial adsorption and activation of CO2 for C1 products over a wide potential window.ACS Nano2024;18:9678-87

[26]

Mukherjee A,Mahapatra SS.Metal sulfide-based nanomaterials for electrochemical CO2 reduction.J Mater Chem A2023;11:9300-32

[27]

Cui H,Guo L,Zhou Z.Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction.J Mater Chem A2018;6:18782-93

[28]

Yang DH,Ding X.Porous organic polymers for electrocatalysis.Chem Soc Rev2022;51:761-91

[29]

Hong J,Kim YE.Ag/C composite catalysts derived from spray pyrolysis for efficient electrochemical CO2 reduction.Chem Eng J2022;431:133384

[30]

Sun K,Jiang HL.Metal-organic frameworks for photocatalytic water splitting and CO2 reduction.Angew Chem Int Ed2023;62:e202217565

[31]

Yang R,Wang H.ZIF-8/covalent organic framework for enhanced CO2 photocatalytic reduction in gas-solid system.Chem Eng J2022;450:138040

[32]

Liu G,Lai C.Strategies for enhancing the photocatalytic and electrocatalytic efficiency of covalent triazine frameworks for CO2 reduction.Small2024;20:e2307853

[33]

Mushtaq N,Wang X,Gao J.MOFs/COFs hybrids as next-generation materials for electrocatalytic CO2 reduction reaction.Chem Eng J2024;486:150098

[34]

Pan Y,Tahir B.Iron-based metal-organic frameworks and their derived materials for photocatalytic and photoelectrocatalytic reactions.Coordin Chem Rev2024;499:215538

[35]

Wang J,Zhu Y,Chen HM.Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO2 reduction.Angew Chem Int Ed2021;60:17254-67

[36]

Li M,Chang X.Toward excellence of transition metal-based catalysts for CO2 electrochemical reduction: an overview of strategies and rationales.Small Methods2020;4:2000033

[37]

Al-rowaili FN,Ba Shammakh MS.A review on recent advances for electrochemical reduction of carbon dioxide to methanol using metal-organic framework (MOF) and non-MOF catalysts: challenges and future prospects.ACS Sustain Chem Eng2018;6:15895-914

[38]

Wang D,Zhang C.Modulating microenvironments to enhance CO2 electroreduction performance.eScience2023;3:100119

[39]

Wu Y,Hou J.Rational design of nanocatalysts with nonmetal species modification for electrochemical CO2 reduction.Adv Energy Mater2020;10:2000588

[40]

Xiao H,Goddard WA 3rd.Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111).J Am Chem Soc2017;139:130-6

[41]

Zhi X,Zheng Y,Qiao S.Role of oxygen-bound reaction intermediates in selective electrochemical CO2 reduction.Energy Environ Sci2021;14:3912-30

[42]

Peng H,Liu X,Bajdich M.The role of atomic carbon in directing electrochemical CO2 reduction to multicarbon products.Energy Environ Sci2021;14:473-82

[43]

Garza AJ,Head-Gordon M.Mechanism of CO2 reduction at copper surfaces: pathways to C2 products.ACS Catal2018;8:1490-9

[44]

Zang Y,Li H,Wang G.Catalyst design for electrolytic CO2 reduction toward low-carbon fuels and chemicals.Electrochem Energy Rev2022;5:140

[45]

Jin S,Zhang K,Chen J.Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization.Angew Chem Int Ed2021;60:20627-48

[46]

Verma S,Jhong HR,Kenis PJ.A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2.ChemSusChem2016;9:1972-9

[47]

Lai W,Zhang J,Huang H.Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction.Energy Environ Sci2022;15:3603-29

[48]

Ma W,Wang W,Zhang Q.Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts.Chem Soc Rev2021;50:12897-914

[49]

Yang C,Zhang Z.Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction.Small2020;16:e2001847

[50]

Zhou Y,Chen J.Bimetallic metal-organic frameworks and MOF-derived composites: recent progress on electro- and photoelectrocatalytic applications.Coordin Chem Rev2022;451:214264

[51]

Chang F,Miao R.Copper-based catalysts for electrochemical carbon dioxide reduction to multicarbon products.Electrochem Energy Rev2022;5:139

[52]

Zhong H,Zhang T,Zhang H.Bismuth nanodendrites as a high performance electrocatalyst for selective conversion of CO2 to formate.J Mater Chem A2016;4:13746-53

[53]

Cao L,Wu X.Active-site stabilized Bi metal-organic framework-based catalyst for highly active and selective electroreduction of CO2 to formate over a wide potential window.Nanoscale2023;15:19522-32

[54]

Zhang X,Li Q.Highly efficient and durable aqueous electrocatalytic reduction of CO2 to HCOOH with a novel bismuth-MOF: experimental and DFT studies.J Mater Chem A2020;8:9776-87

[55]

Ying Y,Kosina J.Reconstructed bismuth-based metal-organic framework nanofibers for selective CO2-to-formate conversion: morphology engineering.ChemSusChem2021;14:3402-12

[56]

Jiang Z,Chen X.A bismuth-based zeolitic organic framework with coordination-linked metal cages for efficient electrocatalytic CO2 reduction to HCOOH.Angew Chem Int Ed2023;62:e202311223

[57]

Chen S,Chen S.Efficient lead removal by assembly of bio-derived ellagate framework, which enables electrocatalytic reduction of CO2 to formate.Small2024;20:e2400978

[58]

Wang YR,He CT.Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2.Nat Commun2018;9:4466 PMCID:PMC6203756

[59]

Zhu HL,Zhang XW.Highly efficient electroconversion of CO2 into CH4 by a metal-organic framework with trigonal pyramidal Cu(I)N3 active sites.ACS Catal2021;11:11786-92

[60]

Liu Y,Zhao Z,Liao P.Insight into the effect of the d-orbital energy of copper ions in metal-organic frameworks on the selectivity of electroreduction of CO2 to CH4.ACS Catal2022;12:2749-55

[61]

Deng J,Xin M.Boosting Electrochemical CO2 reduction on copper-based metal-organic frameworks via valence and coordination environment modulation.Small2024;20:e2311060

[62]

Lu P,Chen Y.Steering the selectivity of carbon dioxide electroreduction from single-carbon to multicarbon products on metal-organic frameworks via facet engineering.Nano Lett2024;24:1553-62

[63]

Wang J,Song Y.Simultaneous defect and size control of metal-organic framework nanostructures for highly efficient carbon dioxide electroreduction to multicarbon products.ACS Mater Lett2023;5:2121-30

[64]

Cao L,Liu Y.Electrochemical conversion of CO2 to syngas with a stable H2/CO ratio in a wide potential range over ligand-engineered metal-organic frameworks.J Mater Chem A2022;10:9954-9

[65]

Shao P,Chen S,Zhang J.Metal-organic frameworks for electrochemical reduction of carbon dioxide: the role of metal centers.J Energy Chem2020;40:156-70

[66]

Al-attas TA,Yong X.Ligand-engineered metal-organic frameworks for electrochemical reduction of carbon dioxide to carbon monoxide.ACS Catal2021;11:7350-7

[67]

Zhao S,Dong J.Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution.Nat Energy2016;1:16184

[68]

Zhu D,Liu J,Du Y.Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation.Chem Commun2017;53:10906-9

[69]

Duan J,Zhao C.Ultrathin metal-organic framework array for efficient electrocatalytic water splitting.Nat Commun2017;8:15341 PMCID:PMC5465318

[70]

Yuan M,Fu W.Ultrathin two-dimensional metal-organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li-O2 batteries.ACS Appl Mater Interfaces2019;11:11403-13

[71]

Hu Q,Wang Z.Unconventionally fabricating defect-rich NiO nanoparticles within ultrathin metal-organic framework nanosheets to enable high-output oxygen evolution.J Mater Chem A2020;8:2140-6

[72]

Zhou W,Wu YP.Stable hierarchical bimetal-organic nanostructures as highperformance electrocatalysts for the oxygen evolution reaction.Angew Chem Int Ed2019;58:4227-31

[73]

Majumder M,Viswanatha R,Dubal DP.Two-dimensional conducting metal-organic frameworks enabled energy storage devices.Energy Storage Mater2021;37:396-416

[74]

Zhao Y,Wang Y.All-fiber structure covered with two-dimensional conductive MOF materials to construct a comfortable, breathable and high-quality self-powered wearable sensor system.J Mater Chem A2022;10:1248-56

[75]

Ball M,Zhong Y.Conjugated macrocycles in organic electronics.ACC Chem Res2019;52:1068-78

[76]

Lv J,Li J.A triptycene-based 2D MOF with vertically extended structure for improving the electrocatalytic performance of CO2 to methane.Angew Chem Int Ed2023;62:e202217958

[77]

Singh AK,Dutta Chowdhury A.Exploring ligand-controlled C2 product selectivity in carbon dioxide reduction with copper metal-organic framework nanosheets.Inorg Chem2023;62:8803-11

[78]

Zhao J,Wang Z.Phthalocyanine and porphyrin catalysts for electrocatalytic reduction of carbon dioxide: progress in regulation strategies and applications.Sep Purif Technol2023;312:123404

[79]

Downes CA.Electrocatalytic metal-organic frameworks for energy applications.ChemSusChem2017;10:4374-92

[80]

Hu XM,Pedersen SU,Daasbjerg K.Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials.Angew Chem Int Ed2017;56:6468-72

[81]

Han J,Liu S.Reordering d orbital energies of single-site catalysts for CO2 electroreduction.Angew Chem Int Ed2019;58:12711-6

[82]

Bohan A,Wang M,Wang Y.Uncoordinated amino groups of MIL-101 anchoring cobalt porphyrins for highly selective CO2 electroreduction.J Colloid Interface Sci2024;654:830-9

[83]

Zhang W,Yang Y.Exclusive Co-N4 sites confined in two-dimensional metal-organic layers enabling highly selective CO2 electroreduction at industrial-level current.Angew Chem Int Ed2023;62:e202219241

[84]

Ifraemov R,Hod I.Photo-assisted electrochemical CO2 reduction to CH4 using a co-porphyrin-based metal-organic framework.Solar RRL2023;7:2201068

[85]

Wu JX,Zhang XD.Cathodized copper porphyrin metal-organic framework nanosheets for selective formate and acetate production from CO2 electroreduction.Chem Sci2019;10:2199-205 PMCID:PMC6385528

[86]

Lee J,Mun J.Nanozyme based on porphyrinic metal-organic framework for electrocatalytic CO2 reduction.Small Struct2023;4:2370002

[87]

Wu JX,Xu M.Ultrathin 2D nickel zeolitic imidazolate framework nanosheets for electrocatalytic reduction of CO2.Chem Commun2019;55:11634-7

[88]

Zhang MD,Shi W,Chen XM.Synergistic effect in a metal-organic framework boosting the electrochemical CO2 overall splitting.J Am Chem Soc2023;145:2439-47

[89]

Zhong H,Ly KH.Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks.Nat Commun2020;11:1409

[90]

Yi JD,Xie R.Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2.Angew Chem Int Ed2021;60:17108-14

[91]

Zhang M,Yi J,Huang Y.Conductive phthalocyanine-based metal-organic framework as a highly efficient electrocatalyst for carbon dioxide reduction reaction.Sci China Chem2021;64:1332-9

[92]

Kim Y,Shin S.Time-resolved observation of C-C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction.Energy Environ Sci2020;13:4301-11

[93]

Qiu XF,Huang JR,Chen XM.Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites.J Am Chem Soc2021;143:7242-6

[94]

Liu J,Zhou Y.Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction.Angew Chem Int Ed2021;60:14473-9

[95]

Liu Y,Dai L.The synthesis of hexaazatrinaphthylene-based 2D conjugated copper metal-organic framework for highly selective and stable electroreduction of CO2 to methane.Angew Chem Int Ed2021;60:16409-15

[96]

Chen S,Jiang W.MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis.Angew Chem Int Ed2022;61:e202114450

[97]

Zhang Y,Li S.Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4.Nat Commun2021;12:6390 PMCID:PMC8568903

[98]

Zheng W,Li Z.Designs of tandem catalysts and cascade catalytic systems for CO2 upgrading.Angew Chem Int Ed2023;62:e202307283

[99]

Mo Q,Chen C,Gao Q.Engineering dual sites into the confined nanospace of the porphyrinic metal-organic framework for tandem transformation of CO2 to ethylene.ACS Sustain Chem Eng2024;12:6093-101

[100]

Du H,Liu L.Recent progress in electrochemical reduction of carbon monoxide toward multi-carbon products.Mater Today2022;59:182-99

[101]

Cho JH,Hong SH.Transition metal ion doping on ZIF-8 enhances the electrochemical CO2 reduction reaction.Adv Mater2023;35:e2208224

[102]

Chen T,Day S.Differential adsorption of l- and d-lysine on achiral MFI zeolites as determined by synchrotron X-ray powder diffraction and thermogravimetric analysis.Angew Chem Int Ed2020;59:1093-7

[103]

Xue Q,Wu S.A rational study on the geometric and electronic properties of single-atom catalysts for enhanced catalytic performance.Nanoscale2020;12:23206-12

[104]

Liu K,Panjehpour A.Metal organic framework composites for reduction of CO2.Coordin Chem Rev2023;493:215257

[105]

Zhao Y,Jiang D.Nanoengineering metal-organic framework-based materials for use in electrochemical CO2 reduction reactions.Small2021;17:e2006590

[106]

Yoon Y,Surendranath Y.Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels.Angew Chem Int Ed2016;55:15282-6

[107]

Nam DH,Rosas-Hernández A.Molecular enhancement of heterogeneous CO2 reduction.Nat Mater2020;19:266-76

[108]

Mukhopadhyay S,Liberman I,Rozenberg I.Assembly of a metal-organic framework (MOF) membrane on a solid electrocatalyst: introducing molecular-level control over heterogeneous CO2 reduction.Angew Chem Int Ed2021;60:13423-9 PMCID:PMC8251703

[109]

Mukhopadhyay S,Shiva Shanker G.Local CO2 reservoir layer promotes rapid and selective electrochemical CO2 reduction.Nat Commun2024;15:3397 PMCID:PMC11035706

[110]

Guntern YT,Vávra J.Nanocrystal/metal-organic framework hybrids as electrocatalytic platforms for CO2 conversion.Angew Chem Int Ed2019;58:12632-9

[111]

Kung C,Peters AW,Farha OK.Copper nanoparticles installed in metal-organic framework thin films are electrocatalytically competent for CO2 reduction.ACS Energy Lett2017;2:2394-401

[112]

Sun B,Liu H.Highly-exposed copper and ZIF-8 interface enables synthesis of hydrocarbons by electrocatalytic reduction of CO2.J Colloid Interface Sci2024;661:831-9

[113]

Takaoka Y,Takagaki A,Ishihara T.Bi/UiO-66-derived electrocatalysts for high CO2-to-formate conversion rate.Appl Catal B Environ2023;326:122400

[114]

Lu X,Wu Z,Francisco JS.In situ observation of the pH gradient near the gas diffusion electrode of CO2 reduction in alkaline electrolyte.J Am Chem Soc2020;142:15438-44

[115]

Aparna RK,Roy D,Shaijumon MM.Silver nanoparticle-decorated defective Zr-based metal-organic frameworks for efficient electrocatalytic carbon dioxide reduction with ultrahigh mass activity.ACS Appl Energy Mater2023;6:4072-8

[116]

Cheng Q,Xiao L.Unraveling the influence of oxygen vacancy concentration on electrocatalytic CO2 reduction to formate over indium oxide catalysts.ACS Catal2023;13:4021-9

[117]

Pourebrahimi S,Ahmadi S,Vafajoo L.Nanoengineering of metal-based electrocatalysts for carbon dioxide (CO2) reduction: a critical review.Mater Today Phys2023;38:101250

[118]

Liu H,Song Q.Assembling metal organic layer composites for high-performance electrocatalytic CO2 reduction to formate.Angew Chem Int Ed2022;61:e202117058 PMCID:PMC9303648

[119]

Wang L,Hao L,Robertson AW.Integration of ultrafine CuO nanoparticles with two-dimensional MOFs for enhanced electrochemical CO2 reduction to ethylene.Chin J Catal2022;43:1049-57

[120]

Tan X,Zhao C.Restructuring of Cu2O to Cu2O@Cu-metal-organic frameworks for selective electrochemical reduction of CO2.ACS Appl Mater Interfaces2019;11:9904-10

[121]

Sun M,Min S,Li K.Controllable preparation of Cu2O/Cu-CuTCPP MOF heterojunction for enhanced electrocatalytic CO2 reduction to C2H4.Appl Surf Sci2024;659:159937

[122]

Wang P,Tang C.Boosting electrocatalytic CO2-to-ethanol production via asymmetric C-C coupling.Nat Commun2022;13:3754 PMCID:PMC9243136

[123]

Zhang Y,Wang X,Zhang H.Self-polarization triggered multiple polar units toward electrochemical reduction of CO2 to ethanol with high selectivity.Angew Chem Int Ed2023;62:e202302241

[124]

Xin Z,Chen Y,Dong L.Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction.Nano Energy2020;67:104233

[125]

Xin Z,Wang X.Implanting polypyrrole in metal-porphyrin MOFs: enhanced electrocatalytic performance for CO2RR.ACS Appl Mater Interfaces2021;13:54959-66

[126]

Dou S,Xi S.Boosting electrochemical CO2 reduction on metal-organic frameworks via ligand doping.Angew Chem Int Ed2019;58:4041-5

[127]

Zheng Y,Huang N,Xu Q.Recent advances in metal-organic framework-derived materials for electrocatalytic and photocatalytic CO2 reduction.Coordin Chem Rev2024;510:215858

[128]

Zheng Y,Xu J.MOF-derived nitrogen-doped nanoporous carbon for electroreduction of CO2 to CO: the calcining temperature effect and the mechanism.Nanoscale2019;11:4911-7

[129]

Payra S,Sharma R,Mohanty P.Photo- and electrocatalytic reduction of CO2 over metal-organic frameworks and their derived oxides: a correlation of the reaction mechanism with the electronic structure.Inorg Chem2022;61:2476-89

[130]

Wu JX,Liang T.Sn(101) derived from metal-organic frameworks for efficient electrocatalytic reduction of CO2.Inorg Chem2021;60:9653-9

[131]

Zhang W,Feng D.MOF-derived 1D/3D N-doped porous carbon for spatially confined electrochemical CO2 reduction to adjustable syngas.Carbon Energy2024;6:e461

[132]

Guo Y,Zhou X.Electrocatalytic reduction of CO2 to CO with 100% faradaic efficiency by using pyrolyzed zeolitic imidazolate frameworks supported on carbon nanotube networks.J Mater Chem A2017;5:24867-73

[133]

Ren Q,Lu XF,Li GR.Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction.Adv Sci2018;5:1700515 PMCID:PMC5867057

[134]

Kuang M,Gu Z,Qian L.Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion.Nano Res2019;12:2324-9

[135]

Ye L,Sun D.Highly efficient porous carbon electrocatalyst with controllable N-species content for selective CO2 reduction.Angew Chem Int Ed2020;59:3244-51

[136]

Wang R,Ould-Chikh S.Metal-organic-framework-mediated nitrogen-doped carbon for CO2 electrochemical reduction.ACS Appl Mater Interfaces2018;10:14751-8

[137]

Frank S,Bøjesen ED.Exploring the influence of atomic level structure, porosity, and stability of bismuth(iii) coordination polymers on electrocatalytic CO2 reduction.J Mater Chem A2021;9:26298-310

[138]

Liu J,Zhou Y.Metal-organic-frameworks-derived Cu/Cu2O catalyst with ultrahigh current density for continuous-flow CO2 electroreduction.ACS Sustain Chem Eng2019;7:15739-46

[139]

Guo W,Chen C.Metal-organic framework-derived indium-copper bimetallic oxide catalysts for selective aqueous electroreduction of CO2.Green Chem2019;21:503-8

[140]

Payra S.From Trash to treasure: probing cycloaddition and photocatalytic reduction of CO2 over cerium-based metal-organic frameworks.J Phys Chem C2021;125:8497-507

[141]

Smolders S,Stock N.Selective catalytic reduction of NO by cerium-based metal-organic frameworks.Catal Sci Technol2020;10:337-41

[142]

Han Y,Li K.In situ synthesis of titanium doped hybrid metal-organic framework UiO-66 with enhanced adsorption capacity for organic dyes.Inorg Chem Front2017;4:1870-80

[143]

Yang D,Sun X.Nanoporous Cu/Ni oxide composites: efficient catalysts for electrochemical reduction of CO2 in aqueous electrolytes.Green Chem2018;20:3705-10

[144]

Kempasiddaiah M,Panigrahy S,Chakraborty B.Electrochemical reconstruction of a 1D Cu(PyDC)(H2O) MOF into in situ formed Cu-Cu2O heterostructures on carbon cloth as an efficient electrocatalyst for CO2 conversion.Nanoscale2024;16:10458-73

[145]

Zhang Y,Zhang P,Li F.Synthesizing MOF-derived NiNC catalyst via surfactant modified strategy for efficient electrocatalytic CO2 to CO.J Colloid Interface Sci2023;631:96-101

[146]

Zhang X,Liu Y,Qiao J.Bismuth anchored on MWCNTs with controlled ultrafine nanosize enables high-efficient electrochemical reduction of carbon dioxide to formate fuel.ACS Sustain Chem Eng2020;8:4871-6

[147]

Vasileff A,Qiao SZ.Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2.Adv Energy Mater2017;7:1700759

[148]

Gong Q,Xu M.Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction.Nat Commun2019;10:2807 PMCID:PMC6594929

[149]

Jia M,Wu TS.Carbon-supported Ni nanoparticles for efficient CO2 electroreduction.Chem Sci2018;9:8775-80 PMCID:PMC6335639

[150]

Huang H,Chen F.Metal-organic frameworks as a good platform for the fabrication of single-atom catalysts.ACS Catal2020;10:6579-86

[151]

Wang H,Liu G,Xu R.Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction.Nano Res2023;16:4546-53

[152]

Chang B,Liu N.Electrocatalytic CO2 reduction to syngas.Green Energy Environ2024;9:1085-100

[153]

Ringe S.The importance of a charge transfer descriptor for screening potential CO2 reduction electrocatalysts.Nat Commun2023;14:2598 PMCID:PMC10162986

[154]

Song C,Song G.Electrocatalytic reduction of CO2 by Co-Cu metastable alloy nanoparticles derived from MOFs.J Alloys Compd2024;994:174693

[155]

Fan J,Mao X.Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO2 conversion.Adv Mater2021;33:e2100910

[156]

Liu SQ,Gao MR.Bi2O3 nanosheets grown on carbon nanofiber with inherent hydrophobicity for high-performance CO2 electroreduction in a wide potential window.ACS Nano2021;15:17757-68

[157]

Ma S,Fan S.Electrocatalytic CO2 reduction enhanced by Sb doping in MOF-derived carbon-supported Bi-based materials.Sep Purif Technol2024;339:126520

[158]

Wang Y,Xu C.Optimizing Bi active sites by Ce doping for boosting formate production in a wide potential window.Inorg Chem Front2024;11:926-35

[159]

Zhao K,Quan X,Yu H.CO2 electroreduction at low overpotential on oxide-derived Cu/carbons fabricated from metal organic framework.ACS Appl Mater Interfaces2017;9:5302-11

[160]

Yang H,Shao J.In situ encapsulated and well dispersed Co3O4 nanoparticles as efficient and stable electrocatalysts for high-performance CO2 reduction.J Mater Chem A2020;8:15675-80

[161]

Deng P,Wang Z.Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate.Angew Chem Int Ed2020;59:10807-13

[162]

Chen Y,Yang L,Wu Q.Recent advances in non-precious metal-nitrogen-carbon single-site catalysts for CO2 electroreduction reaction to CO.Electrochem Energy Rev2022;5:156

[163]

Ma S,Han W,Tang Z.Recent advances and future perspectives in MOF-derived single-atom catalysts and their application: a review.J Mater Chem A2023;11:3315-63

[164]

Wang S,Zhou S.Single-atomic-Ni electrocatalyst derived from phthalocyanine-modified MOF for convoying CO2 intelligent utilization.Energy Mater2024;4:400032

[165]

Chen X,Chen B.Metal-organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe-N active sites for efficient bifunctional oxygen and carbon dioxide electroreduction.Appl Catal B Environ2020;267:118720

[166]

Ye Y,Li H.Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction.Nano Energy2017;38:281-9

[167]

Qin X,Xiao F,Shao M.Active sites on heterogeneous single-iron-atom electrocatalysts in CO2 reduction reaction.ACS Energy Lett2019;4:1778-83

[168]

Yan C,Ye Y.Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction.Energy Environ Sci2018;11:1204-10

[169]

Chung HT,Higgins D.Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst.Science2017;357:479-84

[170]

Liu K,Wang G.Role of local carbon structure surrounding FeN4 sites in boosting the catalytic activity for oxygen reduction.J Phys Chem C2017;121:11319-24

[171]

Pan F,Liu Z.Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction.J Mater Chem A2019;7:26231-7

[172]

Jiao L,Wan G.Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures.Angew Chem Int Ed2020;59:20589-95

[173]

Li J,Shinagawa T.Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon.ACS Catal2019;9:10426-39

[174]

Lee SM,Lee MG.Coordination environment in single-atom catalysts for high-performance electrocatalytic CO2 reduction.Small Struct2023;4:2200236

[175]

Wang H,Chen P.Microenvironment regulation strategies of single-atom catalysts for advanced electrocatalytic CO2 reduction to CO.Nano Energy2023;118:108967

[176]

Zhang Y,Yang W,Jiang HL.Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction.Angew Chem Int Ed2021;60:7607-11

[177]

Gong YN,Qian Y.Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction.Angew Chem Int Ed2020;59:2705-9

[178]

Wang X,Zhao X.Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2.Angew Chem Int Ed2018;57:1944-8

[179]

Jia C,Zhao Y.Sulfur-dopant-promoted electroreduction of CO2 over coordinatively unsaturated Ni-N2 moieties.Angew Chem Int Ed2021;60:23342-8

[180]

Zhao D,Song P.Atomic-level engineering Fe1N2O2 interfacial structure derived from oxygen-abundant metal-organic frameworks to promote electrochemical CO2 reduction.Energy Environ Sci2022;15:3795-804

[181]

Wei S,He C.Construction of single-atom copper sites with low coordination number for efficient CO2 electroreduction to CH4.J Mater Chem A2022;10:6187-92

[182]

Guan A,Quan Y.Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites.ACS Energy Lett2020;5:1044-53

[183]

Jiao L,Zhang Y.Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction.J Am Chem Soc2021;143:19417-24

[184]

Zhong DC,Zhang C.Dinuclear metal synergistic catalysis for energy conversion.Chem Soc Rev2023;52:3170-214

[185]

Pei J,Liao J.Low-coordinated Co-Mn diatomic sites derived from metal-organic framework nanorods promote electrocatalytic CO2 reduction.J Mater Chem A2024;12:13694-702

[186]

Jin Z,Dong Y.Atomic dispersed hetero-pairs for enhanced electrocatalytic CO2 reduction.Nanomicro Lett2023;16:4 PMCID:PMC10628116

[187]

Wang Y,Chen Y.Highly crystalline covalent triazine frameworks modified separator for lithium metal batteries.Energy Mater2024;4:400056

[188]

Chen X,Liu R.Covalent organic frameworks: chemical approaches to designer structures and built-in functions.Angew Chem Int Ed2020;59:5050-91

[189]

Ali SA,Ahmad T.Superlative porous organic polymers for photochemical and electrochemical CO2 reduction applications: from synthesis to functionality.Langmuir2024;40:10414-32

[190]

Zhu X,Wu H.Pyrolyzed triazine-based nanoporous frameworks enable electrochemical CO2 reduction in water.ACS Appl Mater Interfaces2018;10:43588-94

[191]

Li X,Liu Y,Liu Y.Redox-tunable Lewis bases for electrochemical carbon dioxide capture.Nat Energy2022;7:1065-75

[192]

Xiao Y,Chen K,Gong C.Linkage engineering in covalent organic frameworks for metal-free electrocatalytic C2H4 production from CO2.Angew Chem Int Ed2024;63:e202404738

[193]

Liu M,Yang X.Post-synthetic modification of covalent organic frameworks for CO2 electroreduction.Nat Commun2023;14:3800 PMCID:PMC10293238

[194]

Dubed Bandomo GC,Liu C.Toward the understanding of the structure-activity correlation in single-site Mn covalent organic frameworks for electrocatalytic CO2 reduction.ACS Appl Energy Mater2024;7:1348-57

[195]

Zhang L,Lang ZL.Enhanced cuprophilic interactions in crystalline catalysts facilitate the highly selective electroreduction of CO2 to CH4.J Am Chem Soc2021;143:3808-16

[196]

Sakamoto N,Nonaka T.Self-assembled cuprous coordination polymer as a catalyst for CO2 electrochemical reduction into C2 products.ACS Catal2020;10:10412-9

[197]

Sakamoto N,Sato S.Electrochemical CO2 reduction improved by tuning the Cu-Cu distance in halogen-bridged dinuclear cuprous coordination polymers.J Catal2021;404:12-7

[198]

Song Y,Zhu Z.Zwitterionic ultrathin covalent organic polymers for high-performance electrocatalytic carbon dioxide reduction.Appl Catal B Environ2021;284:119750

[199]

Arisnabarreta N,Jin E.Single-layered imine-linked porphyrin-based two-dimensional covalent organic frameworks targeting CO2 reduction.Adv Energy Mater2024;14:2304371

[200]

Zhang M,Li RH.Green synthesis of bifunctional phthalocyanine-porphyrin cofs in water for efficient electrocatalytic CO2 reduction coupled with methanol oxidation.Natl Sci Rev2023;10:nwad226 PMCID:PMC10561706

[201]

Wei S,Rong W,Ji Y.Conjugated nickel phthalocyanine polymer selectively catalyzes CO2-to-CO conversion in a wide operating potential window.App Catal B Environ2021;284:119739

[202]

Xie T,Yue Y,Huang N.Biomimetic phthalocyanine-based covalent organic frameworks with tunable pendant groups for electrocatalytic CO2 reduction.Angew Chem Int Ed2024;63:e202411188

[203]

Kong X,Tong Z.Charge-switchable ligand ameliorated cobalt polyphthalocyanine polymers for high-current-density electrocatalytic CO2 reduction.SmartMat2024;5:e1262

[204]

Lu C,Wei S.Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion.Adv Funct Mater2019;29:1806884

[205]

Wang T,Pei H.Electron-rich pincer ligand-coupled cobalt porphyrin polymer with single-atom sites for efficient (photo)electrocatalytic CO2 reduction at ultralow overpotential.Small2021;17:e2102957

[206]

Johnson EM,Marinescu SC.Covalent-organic frameworks composed of rhenium bipyridine and metal porphyrins: designing heterobimetallic frameworks with two distinct metal sites.ACS Appl Mater Interfaces2018;10:37919-27

[207]

Zhang X,Li H.Viologen linker as a strong electron-transfer mediator in the covalent organic framework to enhance electrocatalytic CO2 reduction.Mater Chem Front2023;7:2661-70

[208]

Li J,Lin J.Coupling electrocatalytic redox-active sites in a three-dimensional bimetalloporphyrin-based covalent organic framework for enhancing carbon dioxide reduction and oxygen evolution.J Mater Chem A2024;12:9478-85

[209]

Endo K,Yao L.Downsizing porphyrin covalent organic framework particles using protected precursors for electrocatalytic CO2 reduction.Adv Mater2024;36:e2313197

[210]

Yue Y,Xu K.Stable bimetallic polyphthalocyanine covalent organic frameworks as superior electrocatalysts.J Am Chem Soc2021;143:18052-60

[211]

Qiu XF,Yu C.A stable and conductive covalent organic framework with isolated active sites for highly selective electroreduction of carbon dioxide to acetate.Angew Chem Int Ed2022;61:e202206470

[212]

Zhang MD,Shi W,Chen XM.Self-accelerating effect in a covalent-organic framework with imidazole groups boosts electroreduction of CO2 to CO.Angew Chem Int Ed2023;62:e202308195

[213]

Wu QJ,Wu Q,Cao R.Boosting electroreduction of CO2 over cationic covalent organic frameworks: hydrogen bonding effects of halogen ions.Angew Chem Int Ed2023;62:e202215687

[214]

Liu M,Yang S.Elaborate modulating binding strength of intermediates via three-component covalent organic frameworks for CO2 reduction reaction.Angew Chem Int Ed2024;63:e202401750

[215]

Wang T,Chen Z.Central site regulation of cobalt porphyrin conjugated polymer to give highly active and selective CO2 reduction to CO in aqueous solution.Appl Catal B Environ2021;291:120128

[216]

Lu Y,Wei W,Wu XT.Efficient carbon dioxide electroreduction over ultrathin covalent organic framework nanolayers with isolated cobalt porphyrin units.ACS Appl Mater Interfaces2020;12:37986-92

[217]

Wang Y,Lei H.Tuning electronic structures of covalent co porphyrin polymers for electrocatalytic CO2 reduction in aqueous solutions.CCS Chem2022;4:2959-67

[218]

Wang R,Weng W.Proton/electron donors enhancing electrocatalytic activity of supported conjugated microporous polymers for CO2 reduction.Angew Chem Int Ed2022;61:e202115503

[219]

Wang T,Lu C.Single-atom anchored curved carbon surface for efficient CO2 electro-reduction with nearly 100% co selectivity and industrially-relevant current density.Adv Mater2023;35:e2205553

[220]

Ao K,Zhang Q.Activating the Ni-contenting carbon nanotube by covalent triazine frameworks to form atomically dispersed Ni sites with curvature effect for electrocatalytic CO2 reduction.Small Struct2024;5:2300500

[221]

Trindell JA,Crooks RM.Size stability and H2/CO selectivity for Au nanoparticles during electrocatalytic CO2 reduction.J Am Chem Soc2017;139:16161-7

[222]

Zhang L,Thanneeru S.A polymer solution to prevent nanoclustering and improve the selectivity of metal nanoparticles for electrocatalytic CO2 reduction.Angew Chem Int Ed2019;58:15834-40

[223]

Zheng Y,Zhou X,Jaroniec M.Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts.J Am Chem Soc2019;141:7646-59

[224]

Popović S,Jovanovič P,Buonsanti R.Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction.Angew Chem Int Ed2020;59:14736-46

[225]

Zheng M,Zhi X.Electrocatalytic CO2-to-C2+ with ampere-level current on heteroatom-engineered copper via tuning *CO intermediate coverage.J Am Chem Soc2022;144:14936-44

[226]

Liu Z,Kong S.Interfacial water tuning by intermolecular spacing for stable CO2 electroreduction to C2+ products.Angew Chem Int Ed2023;62:e202309319

[227]

Zhu Z,Ren Z.Covalent organic framework ionomer steering the CO2 electroreduction pathway on Cu at industrial-grade current density.J Am Chem Soc2024;146:1572-9

[228]

Meng DL,Si DH.Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts.Angew Chem Int Ed2021;60:25485-92

[229]

Zhou L,Shang X.Heterostructure construction of covalent organic frameworks/Ti3C2-MXene for high-efficiency electrocatalytic CO2 reduction.Green Chem2024;26:1454-61

[230]

Popov DA,Orchanian NM,Downes CA.A 2,2'-bipyridine-containing covalent organic framework bearing rhenium(i) tricarbonyl moieties for CO2 reduction.Dalton Trans2018;47:17450-60

[231]

Tang J,Jiang T.Anion exchange-induced single-molecule dispersion of cobalt porphyrins in a cationic porous organic polymer for enhanced electrochemical CO2 reduction via secondary-coordination sphere interactions.J Mater Chem A2020;8:18677-86

[232]

Wu QJ,Ye S,Cao R.Photocoupled electroreduction of CO2 over photosensitizer-decorated covalent organic frameworks.J Am Chem Soc2023;145:19856-65

[233]

Yang YL,Dong LZ.A honeycomb-like porous crystalline hetero-electrocatalyst for efficient electrocatalytic CO2 reduction.Adv Mater2022;34:e2206706

[234]

Liu G,Liu M.Dimensional engineering of covalent organic frameworks derived carbons for electrocatalytic carbon dioxide reduction.SusMat2023;3:834-42

[235]

Lin L,Wang Y.Temperature-dependent CO2 electroreduction over Fe-N-C and Ni-N-C single-atom catalysts.Angew Chem Int Ed2021;133:26786-90

[236]

Liu M,Xu Q.Dual atomic catalysts from COF-derived carbon for CO2 RR by suppressing HER through synergistic effects.Carbon Energy2023;5:e300

PDF

240

Accesses

0

Citation

Detail

Sections
Recommended

/