Advancements in lithium solid polymer batteries: surface modification, in-situ/operando characterization, and simulation methodologies

Shanshan Guo , Xinpei Li , Zihao Zhang , Xiaoming Xu , Haifeng Wang , Chuanjin Zhao , Yijie Gu

Energy Materials ›› 2025, Vol. 5 ›› Issue (4) : 500041

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (4) :500041 DOI: 10.20517/energymater.2024.214
Review

Advancements in lithium solid polymer batteries: surface modification, in-situ/operando characterization, and simulation methodologies

Author information +
History +
PDF

Abstract

The interest in lithium solid-state batteries (LSSBs) is rapidly escalating, driven by their impressive energy density and safety features. However, they face crucial challenges, including limited ionic conductivity, high interfacial resistance, and unwanted side reactions. Intensive research has been conducted on polymer solid-state electrolytes positioned between the anode and cathode, aiming to replace traditional liquid electrolytes. To alleviate interfacial resistance and mitigate adverse reactions between electrodes and polymer electrolytes, the interfacial modification strategy has been proven to enhance the energy density of LSSBs. This design process is grounded in precise and elaborate theories, with in-situ/operando techniques and simulation methods facilitating the interpretation and validation of structure-property relationships by simplifying them. This review first outlines the recent advancements in surface modification strategies specifically tailored for solid polymer electrolytes. Furthermore, it also provides an overview of innovative in-situ/operando characterizations and simulation methods featured in recent publications, which can gain a more accurate understanding of processes that occur within materials, devices, or chemical reactions as they are happening. Lastly, the review discusses the existing challenges and presents a forward-looking perspective on the future of the next-generation LSSBs.

Keywords

Solid-state battery / polymer electrolytes / interface / in-situ/operando characterization / simulation methods

Cite this article

Download citation ▾
Shanshan Guo, Xinpei Li, Zihao Zhang, Xiaoming Xu, Haifeng Wang, Chuanjin Zhao, Yijie Gu. Advancements in lithium solid polymer batteries: surface modification, in-situ/operando characterization, and simulation methodologies. Energy Materials, 2025, 5(4): 500041 DOI:10.20517/energymater.2024.214

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goodenough JB.The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013;135:1167-76

[2]

Scrosati B.Lithium batteries: Status, prospects and future.J Power Sources2010;195:2419-30

[3]

Pereira N,Whittingham MS.Lithium-titanium disulfide rechargeable cell performance after 35 years of storage.J Power Sources2015;280:18-22

[4]

Yu X,Gan L,Chen L.Battery safety: from lithium-ion to solid-state batteries.Engineering2023;21:9-14

[5]

Zhao Q,Zhao CZ.Designing solid-state electrolytes for safe, energy-dense batteries.Nat Rev Mater2020;5:229-52

[6]

Tang X,Jiang K,Liu X.Recent development of ionic liquid-based electrolytes in lithium-ion batteries.J Power Sources2022;542:231792

[7]

Tang L,Zhang Y,Wu M.MOF/PCP-based electrocatalysts for the oxygen reduction reaction.Electrochem Energy Rev2022;5:32-81

[8]

Reddy RCK,Zeb A.Metal-organic frameworks and their derivatives as cathodes for lithium-ion battery applications: a review.Electrochem Energy Rev2022;5:312-47

[9]

Han L,Chen Z.Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: a review.Adv Funct Mater2023;33:2300892

[10]

Zhai Y,Tao M.Enabling high-voltage "superconcentrated ionogel-in-ceramic" hybrid electrolyte with ultrahigh ionic conductivity and single Li+-ion transference number.Adv Mater2022;34:e2205560

[11]

Zhang W,Liu S.Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries.Nat Energy2024;9:386-400

[12]

Zhou S,Dong Y.Composition and structure design of poly(vinylidene fluoride)-based solid polymer electrolytes for lithium batteries.Adv Funct Mater2023;33:2214432

[13]

Zhang H,Li C.Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective.SusMat2021;1:24-37

[14]

Shen Z,Xie Y,Chen J.Solid electrolyte interphase on lithium metal anodes.ChemSusChem2024;17:e202301777

[15]

Wu L,Guo X,Lin Z.Interface science in polymer-based composite solid electrolytes in lithium metal batteries.SusMat2022;2:264-92

[16]

Wu F,Liu Y.Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects.Energy Storage Mater2020;33:26-54

[17]

Su G,Xiao M.Polymeric electrolytes for solid-state lithium ion batteries: structure design, electrochemical properties and cell performances.ChemSusChem2024;17:e202300293

[18]

Lu X,Xu X,Wu T.Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries - review.Adv Energy Mater2023;13:2301746

[19]

Hu L,Wang H.Progress of polymer electrolytes worked in solid-state lithium batteries for wide-temperature application.Small2024;20:e2312251

[20]

Lin Z,Cai X.Solid polymer electrolytes in all-solid-state lithium metal batteries: from microstructures to properties.J Energy Chem2023;81:358-78

[21]

Ning Z,Li G.Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells.Nat Mater2021;20:1121-9

[22]

Zhao J,Dai Q.In situ observation of Li deposition-induced cracking in garnet solid electrolytes.Energy Environ Mater2022;5:524-32

[23]

Liu M,Wagemaker M.A direct view on Li-ion transport and Li-metal plating in inorganic and hybrid solid-state electrolytes.ACC Chem Res2022;55:333-44 PMCID:PMC8811954

[24]

Lucero M,Feng Z.In situ characterizations of solid-solid interfaces in solid-state batteries using synchrotron X-ray techniques.Carbon Energy2021;3:762-83

[25]

Wu LT,Hahlin M,Brandell D.A method for modelling polymer electrolyte decomposition during the Li-nucleation process in Li-metal batteries.Sci Rep2023;13:9060 PMCID:PMC10239748

[26]

Qiu W,Liu J.Multiscale computations and artificial intelligent models of electrochemical performance in Li-ion battery materials.WIREs Comput Mol Sci2022;12:e1592

[27]

Li C,Ji Y.Combining machine learning and metal-organic frameworks research: novel modeling, performance prediction, and materials discovery.Coordin Chem Rev2024;514:215888

[28]

Gu Q,Zhou X,Lin X.Recent progress on polymer solid electrolytes for lithium metal batteries.Acta Chim Sin2024;82:449

[29]

An Y,Liu Y.Progress in solid polymer electrolytes for lithium-ion batteries and beyond.Small2022;18:e2103617

[30]

Zhu J,Zhao S,Belharouak I.Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: design, performance, and challenges.Adv Energy Mater2021;11:2003836

[31]

Wu Y,Wang Y,Chen Q.Advances and prospects of PVDF based polymer electrolytes.J Energy Chem2022;64:62-84

[32]

Zhao Y,Zhou Y.Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries.Adv Sci2021;8:2003675 PMCID:PMC8025011

[33]

Liu W,Li L.Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries.Angew Chem Int Ed2021;133:13041-50

[34]

Deng T,He X.In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries.Chem2021;7:3052-68

[35]

Ma Q,Wu A.Designing bidirectionally functional polymer electrolytes for stable solid lithium metal batteries.Adv Energy Mater2023;13:2203892

[36]

Sen S.Typology of battery cells - from liquid to solid electrolytes.Adv Sci2023;10:e2303985 PMCID:PMC10667820

[37]

Weiss M,Busche MR.From liquid- to solid-state batteries: ion transfer kinetics of heteroionic interfaces.Electrochem Energy Rev2020;3:221-38

[38]

Kim T,Ono LK,Qi YB.A solid-liquid hybrid electrolyte for lithium ion batteries enabled by a single-body polymer/indium tin oxide architecture.J Phys D Appl Phys2021;54:15.

[39]

Li X,Ma S.Low resistance and high stable solid-liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries.Adv Funct Mater2021;31:2010611

[40]

Ferreira M,Xu F,Cai M.Polydopamine-based polymer layer for enhanced interfacial properties of hybrid ceramic-polymer solid electrolytes.ACS Appl Energy Mater2023;6:12095-104

[41]

Liu Q,Kong M,Li G.Sandwich-structured quasi-solid polymer electrolyte enables high-capacity, long-cycling, and dendrite-free lithium metal battery at room temperature.Small2023;19:e2300118

[42]

Yang H,Tennenbaum MJ.Polypropylene carbonate-based adaptive buffer layer for stable interfaces of solid polymer lithium metal batteries.ACS Appl Mater Interfaces2019;11:27906-12

[43]

Guan D,He M.Multilayer PEO/LLZTO composite electrolyte enables high-performance solid-state Li-ion batteries.Ionics2021;27:4127-34

[44]

Nassir WB,Chang J,Yang C.Multilayer hybrid solid-state electrolyte membrane for the high rate and long-life cycle performance of lithium-metal batteries.Colloid Surface A2024;691:133839

[45]

Liu Y,Jin Y.Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries.Sci Adv2017;3:eaao0713 PMCID:PMC5650485

[46]

Kobayashi NP,Wang SY.Atomic layer deposition of aluminum oxide on hydrophobic and hydrophilic surfaces.J Cryst Growth2007;299:218-22

[47]

Johnson RW,Bent SF.A brief review of atomic layer deposition: from fundamentals to applications.Mater Today2014;17:236-46

[48]

Oviroh PO,Pan D,Jen TC.New development of atomic layer deposition: processes, methods and applications.Sci Technol Adv Mater2019;20:465-96 PMCID:PMC6534251

[49]

Zhao B,Guillaume M,Detavernier C.In vacuo XPS investigation of surface engineering for lithium metal anodes with plasma treatment.J Energy Chem2022;66:295-305

[50]

Fan Z,Zhang T.Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium-sulfur batteries by atomic layer deposition.Small2019;15:e1903952

[51]

Garbayo I,Judez X,Castillo J.Alumina nanofilms as active barriers for polysulfides in high-performance all-solid-state lithium-sulfur batteries.ACS Appl Energy Mater2021;4:2463-70

[52]

Ding P,Guo X.Polymer electrolytes and interfaces in solid-state lithium metal batteries.Mater Today2021;51:449-74

[53]

Su S,Zhao L.Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries.Carbon Energy2021;3:866-94

[54]

Yu X,Yuan R.A review of the relationship between gel polymer electrolytes and solid electrolyte interfaces in lithium metal batteries.Nanomaterials2023;13:1789 PMCID:PMC10254576

[55]

He Y,Zhang R.A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium metal batteries.Nat Commun2024;15:10015 PMCID:PMC11576998

[56]

Möhl GE,Müller-buschbaum P.In operando small-angle X-ray scattering investigation of nanostructured polymer electrolyte for lithium-ion batteries.ACS Energy Lett2018;3:1525-30

[57]

Cheng Q,Liu Z.Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy.Nat Commun2018;9:2942 PMCID:PMC6065384

[58]

Liu J,Yu F.In situ optical observation of lithium dendrite pattern in solid polymer electrolytes.Small Methods2024;e2401233

[59]

Otto SK,Fuchs T.In situ investigation of lithium metal-solid electrolyte anode interfaces with ToF-SIMS.Adv Mater Inter2022;9:2102387

[60]

Pereira R,Rafie A,Kalra V.In-operando FTIR study on the redox behavior of sulfurized polyacrylonitrile as cathode material for Li-S batteries.J Phys Chem C2023;127:19356-65

[61]

Lee TH,Kim YJ.Defect engineering in metal-organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation.Angew Chem Int Ed2021;60:13081-8

[62]

Du Y,Li Y.Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity.Carbon2021;178:243-55

[63]

He X,Bechtel HA.In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface.Nat Commun2022;13:1398 PMCID:PMC8931078

[64]

Wen Z,Li L.Study on the interfacial mechanism of bisalt polyether electrolyte for lithium metal batteries.Adv Funct Mater2022;32:2109184

[65]

Lipinski G,Moritz K.Application of Raman spectroscopy for sorption analysis of functionalized porous materials.Adv Sci2022;9:e2105477 PMCID:PMC8948586

[66]

Tharrault M,Carisetti D.Raman spectroscopy of monolayer to bulk PtSe2 exfoliated crystals.2D Mater2024;11:6

[67]

Cao G.Effectiveness of the elastic moduli characterization of graphene or other 2D materials via Raman spectroscopy.Diam Relat Mater2024;146:111201

[68]

Matsuda Y,Okawa T,Kamishima O.In situ Raman spectroscopy of LixCoO2 cathode in Li/Li3PO4/LiCoO2 all-solid-state thin-film lithium battery.Solid State Ion2019;335:7-14

[69]

Cheng XQ,Zhao ZX,Wang XM.The use of in-situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries.New Carbon Mater2021;36:93-105

[70]

Freudiger CW,Saar BG.Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy.Science2008;322:1857-61 PMCID:PMC3576036

[71]

Prince RC,Potma EO.Stimulated raman scattering: from bulk to nano.Chem Rev2017;117:5070-94 PMCID:PMC5471143

[72]

Min W,Lu S.Coherent nonlinear optical imaging: beyond fluorescence microscopy.Annu Rev Phys Chem2011;62:507-30 PMCID:PMC3427791

[73]

Aliyah K,Lazaridis T.Operando scanning small-/wide-angle X-ray scattering for polymer electrolyte fuel cells: investigation of catalyst layer saturation and membrane hydration- capabilities and challenges.ACS Appl Mater Interfaces2024;16:25938-52 PMCID:PMC11129111

[74]

Liang Y,Sun K.Operando study insights into lithiation/delithiation processes in a poly(ethylene oxide) electrolyte of all-solid-state lithium batteries by grazing-incidence X-ray scattering.ACS Appl Mater Interfaces2024;16:33307-15

[75]

Xu M,Shi H.High-strength MOF-based polymer electrolytes with uniform ionic flow for lithium dendrite suppression.Small2024;20:e2406007

[76]

Liu X,Liu G.Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy.Nat Commun2013;4:2568 PMCID:PMC3806410

[77]

Zhao L,Yao Y.Measurement of nanoscale film thickness using neutron depth profiling technique.ACS Appl Mater Interfaces2023;15:35639-47

[78]

Lv S,Liu Y,Cheng J.Neutron depth profiling study on 6lithium and 10boron contents of nuclear graphite.J Nucl Sci and Technol2021;58:1018-24

[79]

Möller S,Seidlmayer S.The Li battery digital twin - combining 4D modelling, electro-chemistry, neutron, and ion-beam techniques.J Power Sources2024;610:234681

[80]

Liu DX,Pan K.In situ quantification and visualization of lithium transport with neutrons.Angew Chem Int Ed2014;53:9498-502

[81]

Persson K,Hardwick LJ.Lithium diffusion in graphitic carbon.J Phys Chem Lett2010;1:1176-80

[82]

Lyons DJ,Co AC.Considerations in applying neutron depth profiling (NDP) to Li-ion battery research.J Mater Chem A2022;10:2336-51

[83]

Liu M,Qian K,Wang C.Efficient Li-metal plating/stripping in carbonate electrolytes using a LiNO3-gel polymer electrolyte, monitored by operando neutron depth profiling.Chem Mater2019;31:4564-74

[84]

Mortensen K,Kirkensgaard JJK,Hassager O.Small-angle neutron scattering study of the structural relaxation of elongationally oriented, moderately stretched three-arm star polymers.Phys Rev Lett2021;127:177801

[85]

Sun R,Safaie N.Molecular view on mechanical reinforcement in polymer nanocomposites.Phys Rev Lett2021;126:117801

[86]

Terban MW.Structural analysis of molecular materials using the pair distribution function.Chem Rev2022;122:1208-72 PMCID:PMC8759070

[87]

Chen XC,Burdette-trofimov MK.Origin of rate limitations in solid-state polymer batteries from constrained segmental dynamics within the cathode.Cell Rep Phys Sci2023;4:101538

[88]

Yang J,Hu J.Revealing the dynamic evolution of Li filaments within solid electrolytes by operando small-angle neutron scattering.Appl Phys Lett2022;121:163901

[89]

Teusner M,Sharma N.In situ synthesis of Cu(II) dicarboxylate metal organic frameworks (MOFs) and their application as battery materials.Phys Chem Chem Phys2023;25:12684-93

[90]

Hou X,He X.Stabilizing the solid-electrolyte interphase with polyacrylamide for high-voltage aqueous lithium-ion batteries.Angew Chem Int Ed2021;60:22812-7 PMCID:PMC8518740

[91]

Bao W,Luo J.Imidazolium-type poly(ionic liquid) endows the composite polymer electrolyte membrane with excellent interface compatibility for all- solid-state lithium metal batteries.ACS Appl Mater Interfaces2022;14:55664-73

[92]

Lin W,Ma S,Wang C.Quasi-solid polymer electrolyte with multiple lithium-ion transport pathways by in situ thermal-initiating polymerization.ACS Appl Mater Interfaces2023;15:8128-37

[93]

Ebadi M,Araujo CM.Modelling the polymer electrolyte/Li-metal interface by molecular dynamics simulations.Electrochim Acta2017;234:43-51

[94]

Wu LT,Brandell D.Prediction of SEI formation in all-solid-state batteries: computational insights from PCL-based polymer electrolyte decomposition on lithium-metal.Batteries Supercaps2022;5:e202200088

[95]

Cao X,Chen Z,Wang F.Phase-field investigation of dendrite suppression strategies for all-solid-state lithium metal batteries.J Energy Storage2024;99:113309

[96]

Jiang W,Hu L,Ma Z.Simulations of dendrite and crack and their interactions in solid electrolyte by phase field method.J Energy Storage2024;86:111126

[97]

Wang W,Lin C.Modeling of void-mediated cracking and lithium penetration in all-solid-state batteries.Adv Funct Mater2023;33:2303484

[98]

Geng XB,Xu B.Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery.Acta Phys Sin2023;72:220201

[99]

Daru J,Behler J.Coupled cluster molecular dynamics of condensed phase systems enabled by machine learning potentials: liquid water benchmark.Phys Rev Lett2022;129:226001

[100]

Perumanath S,Pillai R,Sprittles JE.Rolling and sliding modes of nanodroplet spreading: molecular simulations and a continuum approach.Phys Rev Lett2023;131:164001

[101]

Zhu Y,Zhang M.A locally solvent-tethered polymer electrolyte for long-life lithium metal batteries.Nat Commun2024;15:3914 PMCID:PMC11082227

[102]

Zhao W,Zhou L.Reducing interfacial thermal resistance between polyethylene oxide-based solid-state polymer electrolyte and lithium anode by using IVA group two-dimensional materials: a molecular dynamics study.Int J Heat Mass Transf2024;219:124864

[103]

Zhao L,Zhang X.Laplace-Fourier transform solution to the electrochemical kinetics of a symmetric lithium cell affected by interface conformity.J Power Sources2022;531:231305

[104]

Zhang X,Menga N,Li Y. Contact mechanics modeling for pressure and polymer selections in solid-state batteries. 2022. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4277267 [Last accessed on 16 Jan 2025]

PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

/