Lithium-rich, oxygen-deficient spinel obtained through low-temperature decomposition of heterometallic molecular precursor

Yuxuan Zhang , Zheng Wei , Maria Batuk , Joke Hadermann , Alexander S. Filatov , Joyce Chang , Haixiang Han , Artem M. Abakumov , Evgeny V. Dikarev

Energy Materials ›› 2025, Vol. 5 ›› Issue (7) : 500063

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (7) :500063 DOI: 10.20517/energymater.2024.213
Article

Lithium-rich, oxygen-deficient spinel obtained through low-temperature decomposition of heterometallic molecular precursor

Author information +
History +
PDF

Abstract

A heterometallic single-source molecular precursor Li2Mn2(tbaoac)6 (1, tbaoac = tert-butyl acetoacetato) has been specifically designed to achieve the lowest decomposition temperature and a clean conversion to mixed-metal oxides. The crystal structure of this tetranuclear molecule was determined by single crystal X-ray diffraction, and the retention of heterometallic structure in solution and in the gas phase was confirmed by nuclear magnetic resonance spectroscopy and mass spectrometry, respectively. Thermal decomposition of this precursor at the temperatures as low as 310 oC resulted in a new metastable oxide phase formulated as lithium-rich, oxygen-deficient spinel Li1.5Mn1.5O3.5. This formulation was supported by a comprehensive suite of techniques including thermogravimetric/differential thermal analysis, elemental analysis, inductively coupled mass spectrometry, iodometric titration, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy studies, and Rietveld refinement from powder X-ray diffraction data. Upon heating to about 400 oC, this new low-temperature phase disproportionates stoichiometrically, gradually converting to layered Li2MnO3 and spinel Li1+xMn2-xO4 (x < 0.5). Further heating to 750 oC results in formation of thermodynamically stable Li2MnO3 and LiMn2O4 phases.

Keywords

Heterometallic molecular precursor / thermal decomposition / lithium-manganese oxide / lithium-rich spinel / oxygen-deficient spinel

Cite this article

Download citation ▾
Yuxuan Zhang, Zheng Wei, Maria Batuk, Joke Hadermann, Alexander S. Filatov, Joyce Chang, Haixiang Han, Artem M. Abakumov, Evgeny V. Dikarev. Lithium-rich, oxygen-deficient spinel obtained through low-temperature decomposition of heterometallic molecular precursor. Energy Materials, 2025, 5(7): 500063 DOI:10.20517/energymater.2024.213

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gopalakrishnan J.Chimie douce approaches to the synthesis of metastable oxide materials.Chem Mater1995;7:1265-75

[2]

Stein A,Mallouk TE.Turning down the heat: design and mechanism in solid-state synthesis.Science1993;259:1558-64

[3]

Manthiram A.Low Temperature synthesis of insertion oxides for lithium batteries.Chem Mater1998;10:2895-909

[4]

Elfimov IS,Sawatzky GA.Orbital ordering, Jahn-Teller distortion, and anomalous X-Ray scattering in manganates.Phys Rev Lett1999;82:4264-7

[5]

Kim YM,Biegalski MD.Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level.Nat Mater2012;11:888-94

[6]

Hao X,Lu W.Oxygen vacancies lead to loss of domain order, particle fracture, and rapid capacity fade in lithium manganospinel (LiMn2O4) batteries.ACS Appl Mater Interfaces2014;6:10849-57

[7]

Alonso JA,Casais MT.Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study.Inorg Chem2000;39:917-23

[8]

Lufaso MW.Jahn-Teller distortions, cation ordering and octahedral tilting in perovskites.Acta Crystallogr B2004;60:10-20

[9]

Lutz HD,Müller B.Raman single crystal studies of spinel type MCr2S4(M=Mn, Fe, Co, Zn, Cd), MIn2S4(M=Mn, Fe, Co, Ni), MnCr2-2-xIn2xS4 and Co1-xCdxCr2S4.J Raman Spectroscopy1989;20:99-103

[10]

Lutz H,Steiner H.Lattice vibration spectra. LIX. Single crystal infrared and Raman studies of spinel type oxides.J Solid State Chem1991;90:54-60

[11]

Sun JZ,Duncombe PR.Observation of large low-field magnetoresistance in trilayer perpendicular transport devices made using doped manganate perovskites.Appl Phys Lett1996;69:3266-8

[12]

Bi Z.Solidification for solid-state lithium batteries with high energy density and long cycle life.Energy Mater2022;2:200011

[13]

Lu J,Wu T.Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach.Nat Commun2014;5:5693

[14]

Heng Y,Guo J,Zhao X.Research progress on the surface/interface modification of high-voltage lithium oxide cathode materials.Energy Mater2022;2

[15]

Komaba S.Hydrothermal synthesis of high crystalline orthorhombic LiMnO2 as a cathode material for Li-ion batteries.Solid State Ionics2002;152-153:311-8

[16]

Thackeray MM.Manganese oxides for lithium batteries.Prog Solid State Chem1997;25:1-71

[17]

Freire M,Jordy C.A new active Li-Mn-O compound for high energy density Li-ion batteries.Nat Mater2016;15:173-7

[18]

Ammundsen B.Novel lithium-ion cathode materials based on layered manganese oxides.Adv Mater2001;13:943-56

[19]

Yao Z,He J,Wolverton C.Interplay of cation and anion redox in Li4Mn2O5 cathode material and prediction of improved Li4(Mn,M)2O5 electrodes for Li-ion batteries.Sci Adv2018;4:eaao6754

[20]

Chitrakar R,Miyai Y.A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties.Chem Mater2000;12:3151-7

[21]

21. Xiao JL, Sun SY, Wang J, Li P, Yu J. Synthesis and adsorption properties of Li1.6Mn1.6O4 spinel. Ind Eng Chem Res 2013;52:11967-73.

[22]

Sun S,Wang J,Yu J.Synthesis and adsorption properties of Li1.6Mn1.6O4 by a combination of redox precipitation and solid-phase reaction.Ind Eng Chem Res2014;53:15517-21

[23]

Han H,Barry MC,Dikarev EV.Heterometallic molecular precursors for a lithium-iron oxide material: synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition.Dalton Trans2017;46:5644-9

[24]

Han H,Carozza JC.From lithium to sodium: design of heterometallic molecular precursors for the NaMO2 cathode materials†.Chem Commun2019;55:7243-6

[25]

Han H,Barry MC.A three body problem: a genuine heterotrimetallic molecule vs. a mixture of two parent heterobimetallic molecules.Chem Sci2018;9:4736-45

[26]

Wei Z,Filatov AS.Changing the bridging connectivity pattern within a heterometallic assembly: design of single-source precursors with discrete molecular structures.Chem Sci2014;5:813-8

[27]

Gross JH.Direct analysis in real time-a critical review on DART-MS.Anal Bioanal Chem2014;406:63-80

[28]

Hosono E,Honma I,Zhou H.Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density.Nano Lett2009;9:1045-51

[29]

Takada T,Akiba E.Preparation and crystal structure refinement of Li4Mn5O12 by the rietveld method.J Solid State Chem1995;115:420-6

[30]

Kawai H,Kageyama H,West AR.5 V lithium cathodes based on spinel solid solutions Li2Co1+XMn3-XO8: -1≤X≤1.Electrochim Acta1999;45:315-27

[31]

Takada T,Izumi F.Structure refinement of Li4Mn5O12with neutron and X-Ray powder diffraction data.J Solid State Chem1997;130:74-80

[32]

Boulineau A,Delmas C.Thermal stability of Li2MnO3: from localized defects to the spinel phase.Dalton Trans2012;41:1574-81

[33]

Riou A,Gerault Y.Etude structurale de Li2MnO3.Mater Res Bull1992;27:269-75

[34]

Berg H.Neutron diffraction study of electrochemically delithiated LiMn2O4 spinel.Solid State Ionics1999;126:227-34

[35]

Pei Y,Xiao Y.Understanding the phase transitions in spinel-layered-rock salt system: criterion for the rational design of LLO/spinel nanocomposites.Nano Energy2017;40:566-75

[36]

Takada T,Akiba E,Chakoumakos BC.Novel synthesis process and structure refinements of Li4Mn5O12 for rechargeable lithium batteries.J Power Sources1997;68:613-7

[37]

Croguennec L.Electrochemical behavior of orthorhombic LiMnO2: influence of the grain size and cationic disorder.Solid State Ionics1996;89:127-37

[38]

Lieberman CM,Wei Z,Abakumov AM.Mixed-valent, heteroleptic homometallic diketonates as templates for the design of volatile heterometallic precursors.Chem Sci2015;6:2835-42 PMCID:PMC5654368

[39]

Zhang H,Shpanchenko RV.New class of single-source precursors for the synthesis of main group-transition metal oxides: heterobimetallic Pb-Mn β-diketonates.Inorg Chem2009;48:8480-8

PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

/