The ion-ion correlations in organic ionic plastic crystal

Md. Dipu Ahmed , Murillo L. Martins , Mohanad Abdullah , Harmandeep Singh , Allen Zheng , Steven Greenbaum , Alexei P. Sokolov , Ivan Popov

Energy Materials ›› 2025, Vol. 5 ›› Issue (7) : 500079

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (7) :500079 DOI: 10.20517/energymater.2024.209
Article

The ion-ion correlations in organic ionic plastic crystal

Author information +
History +
PDF

Abstract

Organic ionic plastic crystals (OIPCs) are emerging as promising electrolyte materials for solid-state batteries. However, despite the fast ionic diffusion, OIPCs exhibit relatively low DC conductivity in solid phases caused by strong ion-ion correlations that suppress charge transport. To understand the origin of this suppression, we performed a study of ion dynamics in the OIPC 1-Ethyl-1-methylpyrrolidinium bis (trifluoromethyl sulfonyl) imide [P12][TFSI] utilizing dielectric spectroscopy, light scattering, and Nuclear Magnetic Resonance diffusometry. Comparison of the results obtained in this study with the published earlier results on an OIPC with a completely different structure (Diethyl(methyl)(isobutyl)phosphonium Hexafluorophosphate [P1,2,2,4][PF6]) revealed strong similarities in ion dynamics in both systems. Unlike DC conductivity, which may drop more than ten times between melted and solid phases, diffusion of anions and cations remains high and does not show strong changes at phase transition. The conductivity spectra in the broad frequency range demonstrate unusual shapes in solid phases with an additional step separating fast local ion motions from suppressed long-range charge diffusion controlling DC conductivity. We suggested that in solid phases, anions and cations can jump only between the specific ion sites defined by the crystalline structure. These constraints lead to strong cation-cation and anion-anion correlations strongly suppressing long-range charge transport.

Keywords

Organic ionic plastic crystal / ion conductivity / ion-ion correlations

Cite this article

Download citation ▾
Md. Dipu Ahmed, Murillo L. Martins, Mohanad Abdullah, Harmandeep Singh, Allen Zheng, Steven Greenbaum, Alexei P. Sokolov, Ivan Popov. The ion-ion correlations in organic ionic plastic crystal. Energy Materials, 2025, 5(7): 500079 DOI:10.20517/energymater.2024.209

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Macfarlane DR,Howlett PC.Ionic liquids and their solid-state analogues as materials for energy generation and storage.Nat Rev Mater2016;1:20155

[2]

Thomas ML,Nanbu S.Organic ionic plastic crystals: flexible solid electrolytes for lithium secondary batteries.Energy Adv2023;2:748-64

[3]

Basile A,Makhlooghiazad F.Ionic liquids and organic ionic plastic crystals: advanced electrolytes for safer high performance sodium energy storage technologies.Adv Energy Mater2018;8:1703491

[4]

Makhlooghiazad F,Hilder M.Mixed phase solid-state plastic crystal electrolytes based on a phosphonium cation for sodium devices.Adv Energy Mater2017;7:1601272

[5]

Zhu H,Ranganathan V.Proton transport behaviour and molecular dynamics in the guanidinium triflate solid and its mixtures with triflic acid.J Mater Chem A2014;2:681-91

[6]

Zhu H,Pringle JM.Organic ionic plastic crystals as solid-state electrolytes.Trends Chem2019;1:126-40

[7]

Sonigara KK,Prasad J.Organic ionic plastic crystals as hole transporting layer for stable and efficient perovskite solar cells.Adv Funct Mater2020;30:2001460

[8]

Pringle JM.Recent progress in the development and use of organic ionic plastic crystal electrolytes.Phys Chem Chem Phys2013;15:1339-51

[9]

Matuszek K,Brzęczek-Szafran A.Unexpected energy applications of ionic liquids.Adv Mater2024;36:e2313023

[10]

Pringle JM,Macfarlane DR.Organic ionic plastic crystals: recent advances.J Mater Chem2010;20:2056

[11]

Jin L,Forsyth CM.Structure and transport properties of a plastic crystal ion conductor: diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate.J Am Chem Soc2012;134:9688-97

[12]

Ueda H,Nakanishi A.Unveiling the dynamic change in the ionic conductivity of a solid-state binary mixture comprising an organic ionic plastic crystal and LiBF4.Mater Today Phys2024;43:101395

[13]

Macfarlane DR,Forsyth M.Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries.Nature1999;402:792-4

[14]

Forsyth M,Seeber A,Howlett PC.Structure and dynamics in an organic ionic plastic crystal, N-ethyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl) amide, mixed with a sodium salt.J Mater Chem A2014;2:3993-4003

[15]

Huang J.Solid state lithium ion conduction in pyrrolidinium imide-lithium imide salt mixtures.Solid State Ion2000;136-7:447-52

[16]

Forsyth M,Macfarlane DR.Lithium doped N-methyl-N-ethylpyrrolidinium bis(trifluoromethanesulfonyl)amide fast-ion conducting plastic crystals.J Mater Chem2000;10:2259-65

[17]

Macfarlane DR.Plastic crystal electrolyte materials: new perspectives on solid state ionics.Adv Mater2001;13:957-66

[18]

Biernacka K,Yunis R,Hollenkamp AF.Development of new solid-state electrolytes based on a hexamethylguanidinium plastic crystal and lithium salts.Electrochim Acta2020;357:136863

[19]

Biernacka K,Popov I.Investigation of unusual conductivity behavior and ion dynamics in hexamethylguanidinium bis(fluorosulfonyl)imide-based electrolytes for sodium batteries.J Phys Chem C2021;125:12518-30

[20]

Biernacka K,Popov I.Exploration of phase diagram, structural and dynamic behavior of [HMG][FSI] mixtures with NaFSI across an extended composition range.Phys Chem Chem Phys2022;24:16712-23

[21]

Popov I,Khamzin A.Collective ion dynamics in ionic plastic crystals: the origin of conductivity suppression.J Phys Chem C2023;127:15918-27

[22]

Popov I,Zhu H.Strongly correlated ion dynamics in plastic ionic crystals and polymerized ionic liquids.J Phys Chem C2020;124:17889-96

[23]

MacFarlane DR,Izgorodina EI,Annat G.On the concept of ionicity in ionic liquids.Phys Chem Chem Phys2009;11:4962-7

[24]

Zhang Z,Krajniak J,Ganesan V.Ion mobilities, transference numbers, and inverse haven ratios of polymeric ionic liquids.ACS Macro Lett2020;9:84-9

[25]

Dyre JC,Roling B.Fundamental questions relating to ion conduction in disordered solids.Rep Prog Phys2009;72:046501

[26]

Gainaru C,Bocharova V.Mechanism of conductivity relaxation in liquid and polymeric electrolytes: direct link between conductivity and diffusivity.J Phys Chem B2016;120:11074-83

[27]

Maass P,Bunde A.Nonstandard relaxation behavior in ionically conducting materials.Phys Rev B Condens Matter1995;51:8164-77

[28]

Roling B,Brückner S.Ion transport in glass: influence of glassy structure on spatial extent of nonrandom ion hopping.Phys Rev B2001;63:214203

[29]

Romanenko K,O’Dell LA.New insights into the thermal behaviour of organic ionic plastic crystals: magnetic resonance imaging of polycrystalline morphology alterations induced by solid-solid phase transitions.Phys Chem Chem Phys2015;17:18991-9000

[30]

Pas SJ,Forsyth M,Hill AJ.Defect-assisted conductivity in organic ionic plastic crystals.J Chem Phys2005;122:064704

[31]

Chen F,de Leeuw SW,Forsyth M.Atomistic simulation of structure and dynamics of the plastic crystal diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate.J Chem Phys2013;138:244503

[32]

Chen F,Forsyth M.Dynamic heterogeneity and ionic conduction in an organic ionic plastic crystal and the role of vacancies.J Phys Chem Lett2013;4:4085-9

[33]

Forsyth M,O'dell L.New insights into ordering and dynamics in organic ionic plastic crystal electrolytes.Solid State Ion2016;288:160-6

[34]

Ishai PB,Caduff A,Feldman Y.Electrode polarization in dielectric measurements: a review.Meas Sci Technol2013;24:102001

[35]

Dyre JC.The random free-energy barrier model for ac conduction in disordered solids.J Appl Phys1988;64:2456-68

[36]

Schrøder TB.ac Hopping conduction at extreme disorder takes place on the percolating cluster.Phys Rev Lett2008;101:025901

[37]

Madsen IC,Webster NAS.Quantitative phase analysis. In: Kolb, U.; Shankland, K.; Meshi, L.; Avilov, A.; David, W.; editors, Uniting electron crystallography and powder diffraction. Dordrecht: Springer; 2012, pp.207-18.

[38]

Bish DL.Quantitative phase analysis using the rietveld method.J Appl Cryst1988;21:86-91

[39]

Kashyap HK,Raineri FO.How is charge transport different in ionic liquids and electrolyte solutions?.J Phys Chem B2011;115:13212-21

[40]

Schoenert HJ.Evaluation of velocity correlation coefficients from experimental transport data in electrolytic systems.J Phys Chem1984;88:3359-63

[41]

Ahmed MD,Khamzin A,Sokolov AP.Effect of ion mass on dynamic correlations in ionic liquids.J Phys Chem B2023;127:10411-21

[42]

Noda A,Watanabe M.Pulsed-gradient Spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids.J Phys Chem B2001;105:4603-10

[43]

Tokudaa H,Ishii K,Watanabe M.Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species.J Phys Chem B2004;108:16593-600.

[44]

Tokudaa H,Ishii K,Watanabe M.Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation.J Phys Chem B2005;109:6103-10.

[45]

Tokudaa H,Abu Bin Hasan Susan M,Hayamizu K.Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures.J Phys Chem B2006;110:2833-9

[46]

Tokudaa H,Abu Bin Hasan Susan M,Watanabe M.How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties.J Phys Chem B2006;110:19593-600

[47]

Sangoro JR.Charge transport and glassy dynamics in ionic liquids.ACC Chem Res2012;45:525-32

[48]

Harris KR.Relations between the fractional Stokes-Einstein and Nernst-Einstein equations and velocity correlation coefficients in ionic liquids and molten salts.J Phys Chem B2010;114:9572-7

[49]

Harris KR.Can the transport properties of molten salts and ionic liquids be used to determine ion association?.J Phys Chem B2016;120:12135-47

[50]

Harris KR.Self-diffusion coefficients and related transport properties for a number of fragile ionic liquids.J Chem Eng Data2016;61:2399-411

PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

/