Scalable solution chemical synthesis and comprehensive analysis of Bi2Te3 and Sb2Te3

Bejan Hamawandi , Parva Parsa , Inga Pudza , Kaspars Pudzs , Alexei Kuzmin , Sedat Ballikaya , Edmund Welter , Rafal Szukiewicz , Maciej Kuchowicz , Muhammet S. Toprak

Energy Materials ›› 2025, Vol. 5 ›› Issue (7) : 500065

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (7) :500065 DOI: 10.20517/energymater.2024.204
Article

Scalable solution chemical synthesis and comprehensive analysis of Bi2Te3 and Sb2Te3

Author information +
History +
PDF

Abstract

Thermoelectric (TE) materials can directly convert heat into electrical energy. However, they sustain costly production procedures and batch-to-batch performance variations. Therefore, developing scalable synthetic techniques for large-scale and reproducible quality TE materials is critical for advancing TE technology. This study developed a facile, high throughput, solution-chemical synthetic technique. Microwave-assisted thermolysis process, providing energy-efficient volumetric heating, was used for the synthesis of bismuth and antimony telluride (Bi2Te3, Sb2Te3). As-made materials were characterized using various techniques, including XRPD, SEM, TEM, XAS, and XPS. Detailed investigation of the local atomic structure of the synthesized Bi2Te3 and Sb2Te3 powder samples was conducted through synchrotron radiation XAS experiments. Radial distribution functions around the absorbing atoms were reconstructed using reverse Monte Carlo simulations, and effective force constants for the nearest and distant coordination shells were subsequently determined. The observed differences in the effective force constants support high anisotropy of the thermal conductivity in Bi2Te3 and Sb2Te3 in the directions along and across the quintuple layers in their crystallographic structure. The as-made materials were consolidated via Spark Plasma Sintering to evaluate thermal and electrical transport properties. The sintered TE materials exhibited low thermal conductivity, achieving the highest TE figure-of-merit values of 0.7 (573 K) and 0.9 (523 K) for n-type Bi2Te3 and p-type Sb2Te3, respectively, shifted significantly to the high-temperature region when compared to earlier reports, highlighting their potential for power generation applications. The scalable, energy- and time-efficient synthetic method developed, along with the demonstration of its potential for TE materials, opens the door for a wider application of these materials with minimal environmental impact.

Keywords

Thermoelectric materials / microwave-assisted synthesis / X-ray absorption spectroscopy / reverse Monte Carlo simulations / TE figure-of-merit / thermolysis

Cite this article

Download citation ▾
Bejan Hamawandi, Parva Parsa, Inga Pudza, Kaspars Pudzs, Alexei Kuzmin, Sedat Ballikaya, Edmund Welter, Rafal Szukiewicz, Maciej Kuchowicz, Muhammet S. Toprak. Scalable solution chemical synthesis and comprehensive analysis of Bi2Te3 and Sb2Te3. Energy Materials, 2025, 5(7): 500065 DOI:10.20517/energymater.2024.204

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jaziri N,Müller J,Tounsi F.A comprehensive review of Thermoelectric Generators: technologies and common applications.Energy Rep2020;6:264-87

[2]

Bisht N,Khanna PK,Mishra YK.Progress of hybrid nanocomposite materials for thermoelectric applications.Mater Adv2021;2:1927-56

[3]

Hamawandi B,Paul M.Minute-made, high-efficiency nanostructured Bi2Te3 via high-throughput green solution chemical synthesis.Nanomaterials2021;11:2053 PMCID:PMC8400796

[4]

Yang J,Wang R.Entropy engineering realized ultralow thermal conductivity and high seebeck coefficient in lead-free SnTe.ACS Appl Energy Mater2021;4:12738-44

[5]

Zhang D,Duran SSF,Suwardi A.Additive manufacturing of thermoelectrics: emerging trends and outlook.ACS Energy Lett2022;7:720-35

[6]

Channegowda M,Nagaraj Y.Comprehensive insights into synthesis, structural features, and thermoelectric properties of high-performance inorganic chalcogenide nanomaterials for conversion of waste heat to electricity.ACS Appl Energy Mater2022;5:7913-43

[7]

Tippireddy S,Das S.Oxychalcogenides as thermoelectric materials: an overview.ACS Appl Energy Mater2021;4:2022-40

[8]

Hamawandi B,Råsander M.Composition tuning of nanostructured binary copper selenides through rapid chemical synthesis and their thermoelectric property evaluation.Nanomaterials2020;10:854 PMCID:PMC7712069

[9]

Zoui MA,Stocholm JG.A review on thermoelectric generators: progress and applications.Energies2020;13:3606

[10]

Jaldurgam FF,Touati F.Synthesis and performance of large-scale cost-effective environment-friendly nanostructured thermoelectric materials.Nanomaterials2021;11:1091 PMCID:PMC8146525

[11]

Gite AB,Gaikwad VB.A facile chemical synthesis of PbTe nanostructures at room temperature.Nanomaterials2020;10:1915 PMCID:PMC7601098

[12]

Shi XL,Chen ZG.Advanced thermoelectric design: from materials and structures to devices.Chem Rev2020;120:7399-515

[13]

Recatala-Gomez J,Nandhakumar I,Hippalgaonkar K.Toward accelerated thermoelectric materials and process discovery.ACS Appl Energy Mater2020;3:2240-57

[14]

Murmu PP,Liu Z.Influence of carrier density and energy barrier scattering on a high seebeck coefficient and power factor in transparent thermoelectric copper iodide.ACS Appl Energy Mater2020;3:10037-44

[15]

Wang Y,Rajamathi R,Rajamathi M.The effect of reactive electric field-assisted sintering of MoS2/ Bi2Te3 heterostructure on the phase integrity of Bi2Te3 matrix and the thermoelectric properties.Materials2021;15:53 PMCID:PMC8746225

[16]

Sato HK,Kanno T.Large valley degeneracy and high thermoelectric performance in p-type Ba8Cu6Ge40-based clathrates.Appl Phys Lett2020;116:253901

[17]

Tarachand ,Okram G.Enhanced thermoelectric performance of solution-grown Bi2Te3 nanorods.Mater Today Energy2021;21:100700

[18]

Shi Z,Wei J.Regulating multiscale defects to enhance the thermoelectric performance of Ca0.87Ag0.1Dy0.03MnO3 ceramics.ACS Appl Mater Interfaces2022;14:32166-75

[19]

Li S,Ma Z.Rare earth element doping introduces pores to improve thermoelectric properties of p-type Bi0.46Sb1.54Te3.ACS Appl Energy Mater2021;4:9751-7

[20]

Zhuang H,Cai B.Thermoelectric performance enhancement in BiSbTe alloy by microstructure modulation via cyclic spark plasma sintering with liquid phase.Adv Funct Mater2021;31:2009681

[21]

Li S,Wang R.Precision grain boundary engineering in commercial Bi2Te2.7Se0.3 thermoelectric materials towards high performance.J Mater Chem A2021;9:11442-9

[22]

Jo S,Shin H.Soluble telluride-based molecular precursor for solution-processed high-performance thermoelectrics.ACS Appl Energy Mater2019;2:4582-9

[23]

Irfan S,Manzoor MQ.Effect of co-doping on thermoelectric properties of n-type Bi2Te3 nanostructures fabricated using a low-temperature sol-gel method.Nanomaterials2021;11:2719 PMCID:PMC8541466

[24]

Bu Z,Hu Y.A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery.Nat Commun2022;13:237 PMCID:PMC8752736

[25]

Wiese J.Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys.J Phys Chem Solids1960;15:13-6

[26]

Zhai R,Zhu T.Tunable optimum temperature range of high-performance zone melted bismuth-telluride-based solid solutions.Cryst Growth Des2018;18:4646-52

[27]

Hamawandi B,Ballikaya S.A comparative study on the thermoelectric properties of bismuth chalcogenide alloys synthesized through mechanochemical alloying and microwave-assisted solution synthesis routes.Front Mater2020;7:569723

[28]

Winkler M,König JD.Electrical and structural properties of Bi2Te3 and Sb2Te3 thin films grown by the nanoalloying method with different deposition patterns and compositions.J Mater Chem2012;22:11323

[29]

Feng H,Zhang P,Dong M.Facile hydrothermal synthesis and formation mechanisms of Bi2Te3, Sb2Te3 and Bi2Te3-Sb2Te3 nanowires.RSC Adv2015;5:100309-15

[30]

Ammar S.Polyol synthesis: a versatile wet-chemistry route for the design and production of functional inorganic nanoparticles.Nanomaterials2020;10:1217 PMCID:PMC7353128

[31]

Batili H,Björn Ergül A,Kuchowicz M.A comparative study on the surface chemistry and electronic transport properties of Bi2Te3 synthesized through hydrothermal and thermolysis routes.Colloids Surf A Physicochem Eng Asp2024;682:132898

[32]

Serrano-Claumarchirant JF,Ergül AB.Thermoelectric inks and power factor tunability in hybrid films through all solution process.ACS Appl Mater Interfaces2022;14:19295-303 PMCID:PMC9073925

[33]

Ha HP,Hyun DB.Thermoelectric properties of n-type bismuth telluride based alloys prepared by hot pressing and zone melting method.Int J Soc Mater Eng Resour2002;10:130-4

[34]

Batili H,Ergül AB.On the electrophoretic deposition of Bi2Te3 nanoparticles through electrolyte optimization and substrate design.Colloids Surf A Physicochem Eng Asp2022;649:129537

[35]

Batili H,Parsa P.Electrophoretic assembly and electronic transport properties of rapidly synthesized Sb2Te3 nanoparticles.Appl Surf Sci2023;637:157930

[36]

Dong G,Chen L.Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering.J Mater Chem2010;20:1976

[37]

Welter E,Herrmann M.A beamline for bulk sample X-ray absorption spectroscopy at the high brilliance storage ring PETRA III.AIP Conf Proc2019;2054:040002

[38]

Kumar A,Bano S,Bhatt K.A review on sources of uncertainty in thermal conductivity measurement for thermal transport metrology. In: Yadav S, Chaudhary K, Gahlot A, Arya Y, Dahiya A, Garg N, editors. Recent advances in metrology. Singapore: Springer Nature; 2023. pp. 137-45.

[39]

Kuznetsov GV.The errors when determining thermal characteristics by the laser flash method due to the thickness of the sample and the duration of the heating pulse.Meas Tech2012;55:454-8

[40]

Kalinko A. xaesa. Available from: https://gitlab.desy.de/aleksandr.kalinko/xaesa [Last accessed on 5 Feb 2025]

[41]

Kuzmin A.EXAFS and XANES analysis of oxides at the nanoscale.IUCrJ2014;1:571-89 PMCID:PMC4224475

[42]

Timoshenko J,Purans J.Reverse Monte Carlo modeling of thermal disorder in crystalline materials from EXAFS spectra.Comput Phys Commun2012;183:1237-45

[43]

Timoshenko J,Purans J.EXAFS study of hydrogen intercalation into ReO3 using the evolutionary algorithm.J Phys Condens Matter2014;26:055401

[44]

Mansour AN,Huang Q,Thompson A.Structural characterization of Bi2Te3 and Sb2Te3 as a function of temperature using neutron powder diffraction and extended X-ray absorption fine structure techniques.J Appl Phys2014;116:083513

[45]

Ankudinov AL,Rehr JJ.Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure.Phys Rev B1998;58:7565-76

[46]

Rehr JJ.Theoretical approaches to X-ray absorption fine structure.Rev Mod Phys2000;72:621-54

[47]

Hedin L.Explicit local exchange-correlation potentials.J Phys C Solid State Phys1971;4:2064-83

[48]

Timoshenko J.Wavelet data analysis of EXAFS spectra.Comput Phys Commun2009;180:920-5

[49]

Hamawandi B,Batili H.Facile solution synthesis, processing and characterization of n- and p-type binary and ternary Bi-Sb tellurides.Appl Sci2020;10:1178

[50]

Jonane I,Kuzmin A.Advanced approach to the local structure reconstruction and theory validation on the example of the W L3-edge extended X-ray absorption fine structure of tungsten.Model Simul Mater Sci Eng2018;26:025004

[51]

Jonane I,Aquilanti G.High-temperature X-ray absorption spectroscopy study of thermochromic copper molybdate.Acta Mater2019;179:26-35

[52]

Shannon RD.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.Acta Cryst A1976;32:751-67

[53]

Eivari H,Mele P.Low thermal conductivity: fundamentals and theoretical aspects in thermoelectric applications.Mater Today Energy2021;21:100744

[54]

Parashchuk T,Cherniushok O.Ultralow lattice thermal conductivity and improved thermoelectric performance in Cl-doped Bi2Te3-xSex alloys.ACS Appl Mater Interfaces2022;14:33567-79 PMCID:PMC9335406

[55]

Zahid AH.A review on the preparation, microstructure, and photocatalytic performance of Bi2O3 in polymorphs.Nanoscale2021;13:17687-724

[56]

Sun G,Wang S.Selective growth of wide band gap atomically thin Sb2O3 inorganic molecular crystal on WS2.Nano Res2019;12:2781-7

[57]

Guo S,Hu X.Ultrathin tellurium dioxide: emerging direct bandgap semiconductor with high-mobility transport anisotropy.Nanoscale2018;10:8397-403

[58]

Zhao Y,Hernandez BM.Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration.J Am Chem Soc2010;132:4982-3

[59]

Scheele M,Veremchuk I.ZT enhancement in solution-grown Sb2-xBixTe3 nanoplatelets.ACS Nano2010;4:4283-91

[60]

Zhang C,Li Z,Khor KA.Controlled growth of bismuth antimony telluride BixSb2-xTe3 nanoplatelets and their bulk thermoelectric nanocomposites.Nano Energy2015;15:688-96

[61]

Nam G,Chung DS.Thermoelectric power factor exceeding 50 μW m-1K-2 from water-borne colloids of polymer semiconductors.J Mater Chem C2020;8:13439-44

[62]

Yang HQ,Zhang M.Low-temperature, solution-based, scalable synthesis of Sb2Te3 nanoparticles with an enhanced power factor.J Electron Mater2014;43:2165-73

[63]

Ruamruk S,Singsoog K.Power factor of Bi2Te3 and Sb2Te3 enhanced by high density and hardness.Suranaree J Sci Technol2023;30:030145(1-5)

[64]

Imamuddin M.Thermoelectric properties of p-type Bi2Te3-Sb2Te3-Sb2Se3 alloys and N-type Bi2Te3-Bi2Se3 alloys in the temperature range 300 to 600 K.Phys Stat Sol1972;10:415-24

[65]

Han MK,Lee DH.Thermoelectric properties of Bi2Te3: CuI and the effect of its doping with Pb atoms.Materials2017;10:1235 PMCID:PMC5706182

[66]

Park D,Jeong K,Song JY.Thermal and electrical conduction of single-crystal Bi2Te3 nanostructures grown using a one step process.Sci Rep2016;6:19132 PMCID:PMC4707524

[67]

Son JS,Han MK.n-type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates.Nano Lett2012;12:640-7

[68]

Lim YS,Lee G.Synthesis of n-type Bi2Te1-xSex compounds through oxide reduction process and related thermoelectric properties.J Eur Ceram Soc2017;37:3361-6

[69]

Mehta RJ,Karthik C.A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly.Nat Mater2012;11:233-40

[70]

Dharmaiah P.Hydrothermal method for the synthesis of Sb2Te3, and Bi0.5Sb1.5Te3 nanoplates and their thermoelectric properties.Int J Appl Ceram Technol2018;15:132-9

[71]

Im HJ,Kim M.Solvothermal synthesis of Sb2Te3 nanoplates under various synthetic conditions and their thermoelectric properties.Appl Surf Sci2019;475:510-4

PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

/