Quasi-solid polymer electrolytes with binary and ternary salt mixtures for high-voltage lithium metal batteries

Nicola Boaretto , Oihane Garcia-Calvo , Mónica Cobos , Asier Fernandez de Añastro , Marta Diez Viera , Mustafa Al Sammarraie Shakir , Simon Lindberg , Rosalia Cid Barreno , Gérôme Godillot , Leif Olav Jøsang , Andriy Kvasha , María Martínez-Ibañez

Energy Materials ›› 2025, Vol. 5 ›› Issue (4) : 500040

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (4) :500040 DOI: 10.20517/energymater.2024.203
Article

Quasi-solid polymer electrolytes with binary and ternary salt mixtures for high-voltage lithium metal batteries

Author information +
History +
PDF

Abstract

Quasi-solid polymer electrolytes (QSPEs) are considered a promising alternative to liquid electrolytes for high-voltage lithium metal batteries. Herein, we present their properties and performance supported on polyolefin microporous separators. These QSPEs consist of a poly(vinylidene-fluoride-co-hexafluoropropylene) polymer matrix, ethylene carbonate as a plasticizer, and various lithium salt mixtures, including lithium bis(fluorosulfonyl)imide (LiFSI), lithium bis(oxalate)borate (LiBOB), and LiNO3 as a solid electrolyte interface-forming additive. They exhibit an ionic conductivity of ca. 1 mS cm-1 at room temperature and excellent resistance against lithium dendrites, attributed to the presence of the tough polyolefin separator. The effect of the lithium salt mixture composition on lithium plating/stripping performance and electrooxidation stability was studied in detail, showing that LiNO3, while having a clear positive effect on the plating/stripping performance, may also adversely affect the oxidative stability of the electrolyte, accelerating the degradation of the cathode/electrolyte interface. QSPEs with binary LiFSI/LiBOB salt mixtures were tested at room temperature in a LiNi0.8Mn0.1Co0.1O2||Li monolayer pouch cell with a cathode area capacity of ca. 2.5 mAh cm-2. This cell delivered an initial capacity close to 200 mAh g-1 at C/20, 150 mAh g-1 at C/1, and 80% capacity retention after 100 cycles at 25 °C. The results demonstrate the viability of supported QSPEs, based on poly(vinylidene-fluoride-co-hexafluoropropylene), ethylene carbonate, LiFSI and LiBOB, for application in high-voltage quasi solid-state lithium metal batteries.

Keywords

Lithium metal batteries / gel polymer electrolytes / quasi solid-state electrolytes / high voltage / NMC-811 / LiNO3

Cite this article

Download citation ▾
Nicola Boaretto, Oihane Garcia-Calvo, Mónica Cobos, Asier Fernandez de Añastro, Marta Diez Viera, Mustafa Al Sammarraie Shakir, Simon Lindberg, Rosalia Cid Barreno, Gérôme Godillot, Leif Olav Jøsang, Andriy Kvasha, María Martínez-Ibañez. Quasi-solid polymer electrolytes with binary and ternary salt mixtures for high-voltage lithium metal batteries. Energy Materials, 2025, 5(4): 500040 DOI:10.20517/energymater.2024.203

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Choudhury S,Nijamudheen A.Stabilizing polymer electrolytes in high-voltage lithium batteries.Nat Commun2019;10:3091 PMCID:PMC6626095

[2]

Cui S,Yang Y.Heterostructured gel polymer electrolyte enabling long-cycle quasi-solid-state lithium metal batteries.ACS Energy Lett2022;7:42-52

[3]

Wu F,Fang S,Kim G.The role of ionic liquids in resolving the interfacial chemistry for (quasi-) solid-state batteries.Energy Storage Mater2023;63:103062

[4]

Li W,Liu J.Systematic safety evaluation of quasi-solid-state lithium batteries: a case study.Energy Environ Sci2023;16:5444-53

[5]

Wang Z,Shen L.Towards durable practical lithium-metal batteries: advancing the feasibility of poly-DOL-based quasi-solid-state electrolytes via a novel nitrate-based additive.Energy Environ Sci2023;16:4084-92

[6]

Pan J,Yao H,Fan HJ.Inert filler selection strategies in Li-ion gel polymer electrolytes.ACS Appl Mater Interfaces2024;16:48706-12

[7]

Yao M,Yu T,Zhang S.Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery.Energy Storage Mater2022;44:93-103

[8]

Zhang T,Li X.A silica-reinforced composite electrolyte with greatly enhanced interfacial lithium-ion transfer kinetics for high-performance lithium metal batteries.Adv Mater2022;34:e2205575

[9]

Li L,Zhang L,Deng Y.Rational design of a heterogeneous double-layered composite solid electrolyte via synergistic strategies of asymmetric polymer matrices and functional additives to enable 4.5 V all-solid-state lithium batteries with superior performance.Energy Storage Mater2022;45:1062-73

[10]

Qiu G,Huang B.A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries.Nano Res2022;15:5153-60

[11]

Wang Q,Zhu W.Achieving stable interface for lithium metal batteries using fluoroethylene carbonate-modified garnet-type Li6.4La3Zr1.4Ta0.6O12 composite electrolyte.Electrochim Acta2023;446:142063

[12]

Shen C,Yu Y.In situ polymerization inhibiting electron localization in hybrid electrolyte for room-temperature solid-state lithium metal batteries.Adv Energy Mater2024;14:2304511

[13]

Boaretto N,Lindberg S.Hybrid ceramic polymer electrolytes enabling long cycling in practical 1 Ah-class high-voltage solid-state batteries with Li metal anode.Adv Funct Mater2024;34:2404564

[14]

Boaretto N,Martinez-ibañez M,Zhang H.Review-polymer electrolytes for rechargeable batteries: from nanocomposite to nanohybrid.J Electrochem Soc2020;167:070524

[15]

Marchiori CFN,Ebadi M,Araujo CM.Understanding the electrochemical stability window of polymer electrolytes in solid-state batteries from atomic-scale modeling: the role of Li-ion salts.Chem Mater2020;32:7237-46

[16]

Chen L,Kim C,Chandrasekaran A.Electrochemical stability window of polymeric electrolytes.Chem Mater2019;31:4598-604

[17]

Bao D,Zhong Y.High-performance dual-salt plastic crystal electrolyte enabled by succinonitrile-regulated porous polymer host.Adv Funct Mater2023;33:2213211

[18]

Barbosa JC,Correia DM.Effect of fluorinated polymer matrix type in the performance of solid polymer electrolytes based on ionic liquids for solid-state lithium-ion batteries.Chem Eng J2023;478:147388

[19]

Agnihotri T,Tamilarasan EB.Anion-trapping composite gel electrolyte for safer and more stable anode-free lithium-metal batteries.Chem Eng J2024;484:149608

[20]

Deshmukh SP,Kundu D.Unraveling the underlying structural & transport mechanism of lithium-ion within Lithium bis(trifluoromethanesulfonyl)imide subjected to organic & inorganic matrix based Eutectogel.J Power Sources2024;600:234270

[21]

Duan H,Wang G.Lithium-ion charged polymer channels flattening lithium metal anode.Nanomicro Lett2024;16:78

[22]

Gai Q,Ma J,Gao H.An in-situ bicomponent polymeric matrix solid electrolyte for solid-state Lithium metal batteries with extended cycling-life.J Energy Storage2024;80:110150

[23]

Lin Y,Zhan Y.Self-assembly formation of solid-electrolyte interphase in gel polymer electrolytes for high performance lithium metal batteries.Energy Storage Mater2023;61:102868

[24]

Lv Q,Wang B.Multilayer asymmetric solid polymer electrolyte with modified interface for high-voltage solid-state Li metal batteries.Energy Storage Mater2024;65:103122

[25]

Li Z,Jiang Z,Gu C.Deep eutectic solvent-immobilized PVDF-HFP eutectogel as solid electrolyte for safe lithium metal battery.Mater Chem Phys2021;267:124701

[26]

Zhang J,Huang X,Wang G.Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety.Sci Rep2014;4:6007 PMCID:PMC4148667

[27]

Bai M,Zhang M.An in-situ polymerization strategy for gel polymer electrolyte Si||Ni-rich lithium-ion batteries.Nat Commun2024;15:5375

[28]

Jiang X,Bai M.Breaking solvation dominance of phosphate via dipole-dipole chemistry in gel polymer electrolyte.ACS Energy Lett2024;9:3369-79

[29]

Li X,Zhang W.Flame-retardant in-situ formed gel polymer electrolyte with different valance states of phosphorus structures for high-performance and fire-safety lithium-ion batteries.Chem Eng J2024;490:151568

[30]

Pan J,Wang J.A quasi-double-layer solid electrolyte with adjustable interphases enabling high-voltage solid-state batteries.Adv Mater2022;34:e2107183

[31]

Shi J,Chen Z.Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast charging lithium-metal batteries.Energy Mater2023;3:300036

[32]

Cho Y,Hoang HA.Flexible and hyper ion-conductive LATP-embedded semi-interpenetrating polymer network electrolyte membrane for solid-state lithium battery.J Energy Storage2024;92:112295

[33]

Steinle D,Nguyen H.Single-ion conducting polymer electrolyte for Li||LiNi0.6Mn0.2Co0.2O2 batteries - impact of the anodic cutoff voltage and ambient temperature.J Solid State Electrochem2022;26:97-102

[34]

Dong X,Liu X,Bresser D.Single-ion conducting multi-block copolymer electrolyte for lithium-metal batteries with high mass loading NCM811 cathodes.ACS Energy Lett2023;8:1114-21

[35]

Dong X,Gao X.Stepwise optimization of single-ion conducting polymer electrolytes for high-performance lithium-metal batteries.J Energy Chem2023;80:174-81

[36]

Sun Q,Ma Y.Li-ion transfer mechanism of gel polymer electrolyte with sole fluoroethylene carbonate solvent.Adv Mater2023;35:e2300998

[37]

Mao M,Li Q,He Y.In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery.Nano Energy2020;78:105282

[38]

Orue A,Gonzalez U,Cid R.Enhancing high-voltage solid-state lithium-metal battery performance through a stable solid-electrolyte interphase.J Mater Chem A2024;12:22775-84

[39]

Zhao Q,Li S,Archer LA.Solid-state polymer electrolytes stabilized by task-specific salt additives.J Mater Chem A2019;7:7823-30

[40]

Wang Z,Song Y.Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries.Nano Res2020;13:2431-7

[41]

Marangon V,Hassoun J.An alternative composite polymer electrolyte for high performances lithium battery.J Power Sources2020;449:227508

[42]

Zhang X,Zhang Q.LiNO3 and TMP enabled high voltage room-temperature solid-state lithium metal battery.Chem Eng J2022;448:137743

[43]

Wen S,Wang Q.Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries.Energy Storage Mater2022;47:453-61

[44]

Zhang Z,Qiu F.High concentration in situ polymer gel electrolyte for high performance lithium metal batteries.Chem Commun2024;60:6276-9

[45]

Wang Q,Wang Y.In situ catalytic polymerization of LiNO3-containing PDOL electrolytes for high-energy quasi-solid-state lithium metal batteries.Chem Eng J2024;484:149757

[46]

Jing C,Liu D.Crosslinked solubilizer enables nitrate-enriched carbonate polymer electrolytes for stable, high-voltage lithium metal batteries.Sci Bull2024;69:209-17

[47]

Cui Z,Tominaga Y.Development of polycarbonate-based electrolytes with in situ polymerized electrolyte interlayers for lithium-metal batteries.J Energy Storage2024;79:110175

[48]

Li P,Lu J.Low concentration sulfolane-based electrolyte for high voltage lithium metal batteries.Angew Chem Int Ed2023;62:e202216312

[49]

Zhao C,Yan K.Tailoring the chemical/electrochemical response in a quasi-solid polymer electrolyte enables the simultaneous in situ construction of superior cathodic and anodic interfaces.Adv Energy Mater2024;14:2304532

[50]

Wang Y,Yang X.2D solid-electrolyte interphase built by high-concentration polymer electrolyte for highly reversible silicon anodes.Adv Energy Mater2024;14:2303189

[51]

Ren W,Huang Y.Hydroxypropylmethylcellulose: functional material carrier for in-situ solid electrolyte engineering of advanced lithium metal batteries.Energy Storage Mater2023;59:102777

[52]

Li B,Li M.A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries.Electrochem Energy Rev2023;6:147

[53]

Wang X,Li M.LiNO3 regulated rigid-flexible-synergistic polymer electrolyte boosting high-performance Li metal batteries.Energy Storage Mater2024;73:103778

[54]

Cui Z,Hassoun J.Polycarbonate-based composite polymer electrolytes with Al2O3 enhanced by in situ polymerized electrolyte interlayers for all-solid-state lithium-metal batteries.J Power Sources2024;611:234760

[55]

Watanabe M.Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements.Solid State Ion1988;28-30:911-7

[56]

Adams BD,Ren X,Zhang J.Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries.Adv Energy Mater2018;8:1702097

[57]

Seah MP.Simple universal curve for the energy-dependent electron attenuation length for all materials.Surf Interface Anal2012;44:1353-9

[58]

Fairley N,Richard-plouet M.Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy.App Surf Sci Adv2021;5:100112

[59]

Jagger B.Solid electrolyte interphases in lithium metal batteries.Joule2023;7:2228-44

[60]

Orue A,Cid R.High resolution XPS of organic polymers: the scienta ESCA300 database (Beamson, G.; Briggs, D.).J Chem Educ1993;70:A25

[61]

Orue A,Cid R.Enhancing the polymer electrolyte-Li metal interface on high-voltage solid-state batteries with Li-based additives inspired by the surface chemistry of Li7La3Zr2O12.J Mater Chem A2022;10:2352-61

[62]

Xue W,Huang M.FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries.Energy Environ Sci2020;13:212-20

[63]

Wurster V,Graebe H,Jaegermann W.Characterization of the interfaces in LiFePO4/PEO-LiTFSI composite cathodes and to the adjacent layers.J Electrochem Soc2019;166:A5410-20

[64]

Liu Y,Fang R.Ultra-homogeneous dense Ag nano layer enables long lifespan solid-state lithium metal batteries.J Energy Chem2024;96:110-9

[65]

Seki S,Miyashiro H,Iwahori T.Fabrication of high-voltage, high-capacity all-solid-state lithium polymer secondary batteries by application of the polymer electrolyte/inorganic electrolyte composite concept.Chem Mater2005;17:2041-5

[66]

Sabet P, Sauer DU. Separation of predominant processes in electrochemical impedance spectra of lithium-ion batteries with nickel-manganese-cobalt cathodes.J Power Sources2019;425:121-9

[67]

Charbonneau V,Brisard G.Impedance studies of Li+ diffusion in nickel manganese cobalt oxide (NMC) during charge/discharge cycles.J Electroanal Chem2020;875:113944

[68]

Pritzl D,Wetjen M,Solchenbach S.Identifying contact resistances in high-voltage cathodes by impedance spectroscopy.J Electrochem Soc2019;166:A582-90

[69]

Brug G,Sluyters-Rehbach M.The analysis of electrode impedances complicated by the presence of a constant phase element.J Electroanal Chem Interfacial Electrochem1984;176:275-95

[70]

Cabañero Martínez MA,Naylor AJ.Are polymer-based electrolytes ready for high-voltage lithium battery applications? An overview of degradation mechanisms and battery performance.Adv Energy Mater2022;12:2201264

[71]

Boaretto N,Valiyaveettil-Sobhanraj S.Lithium solid-state batteries: state-of-the-art and challenges for materials, interfaces and processing.J Power Sources2021;502:229919

[72]

Chiou M,Thienenkamp JH.Durable fast-charging lithium metal batteries designed with cross-linked polymer electrolytes and niobate-coated cathode.J Power Sources2022;538:231528

[73]

Chen Y,Liu KL.Towards all-solid-state polymer batteries: going beyond PEO with hybrid concepts.Adv Funct Mater2023;33:2300501

[74]

Zhai P,Ahmad N,Shao R.Constructing nano-interlayer inhibiting interfacial degradation toward high-voltage PEO-based all-solid-state lithium batteries.Small2024;20:e2310547

[75]

Zhang W,Wan L.Engineering a passivating electric double layer for high performance lithium metal batteries.Nat Commun2022;13:2029 PMCID:PMC9018679

[76]

Jin C,Li L.A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries.Nat Commun2023;14:8269 PMCID:PMC10719308

[77]

Ma M,Wen P.Reactive solid polymer layer: from a single fluoropolymer to divergent fluorinated interface.Angew Chem Int Ed2024;63:e202407304

PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

/