Impact of compaction pressure on formation and performance of garnet-based solid-state lithium batteries

Jie Zhu , Yunfan Wu , Hongyi Zhang , Xujia Xie , Yong Yang , Hongyu Peng , Xiaochun Liang , Qiongqiong Qi , Weibin Lin , Dong-Liang Peng , Laisen Wang , Jie Lin

Energy Materials ›› 2025, Vol. 5 ›› Issue (4) : 500034

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (4) :500034 DOI: 10.20517/energymater.2024.201
Article

Impact of compaction pressure on formation and performance of garnet-based solid-state lithium batteries

Author information +
History +
PDF

Abstract

Compaction pressure directly determines the compactness of solid-state electrolytes (SSEs), which is crucial to affect the electrochemical performance of solid-state lithium batteries (SLBs). Herein, Li6.5La3Zr1.5Ta0.5O12 (LLZTO) pellets are compacted under various pressures before sintering to study the impact of compaction pressure on the overall properties of LLZTO SSEs and their SLBs. Notably, the sample pressed at 600 MPa (LLZTO-600) exhibits the highest compactness and the highest ionic conductivity due to improved particle contact and suppressed lithium loss. Consequently, the Li|LLZTO-600|Li symmetric cell exhibits the best performance among the samples, which can stably cycle for 1,500 h without short circuits. Meanwhile, the LiFePO4|LLZTO-600|Li full cell can retain 94.8% of its initial capacity after 150 cycles with the lowest overpotential among the SSEs. This work highlights the importance of tuning compaction pressure in developing high-performance SSEs and related SLBs.

Keywords

Compaction pressure / formation / garnet / solid-state electrolyte / solid-state lithium battery

Cite this article

Download citation ▾
Jie Zhu, Yunfan Wu, Hongyi Zhang, Xujia Xie, Yong Yang, Hongyu Peng, Xiaochun Liang, Qiongqiong Qi, Weibin Lin, Dong-Liang Peng, Laisen Wang, Jie Lin. Impact of compaction pressure on formation and performance of garnet-based solid-state lithium batteries. Energy Materials, 2025, 5(4): 500034 DOI:10.20517/energymater.2024.201

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhu Y,Mo Y.Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations.ACS Appl Mater Interfaces2015;7:23685-93

[2]

Diederichsen KM,Mccloskey BD.Promising routes to a high Li+ transference number electrolyte for lithium ion batteries.ACS Energy Lett2017;2:2563-75

[3]

Li J,Chi M,Dudney NJ.Solid electrolyte: the key for high-voltage lithium batteries.Adv Energy Mater2015;5:1401408

[4]

Takada K.Progress in solid electrolytes toward realizing solid-state lithium batteries.J Power Sources2018;394:74-85

[5]

Fuller TF,Newman J.Simulation and optimization of the dual lithium ion insertion cell.J Electrochem Soc1994;141:1

[6]

Wu JF,Peterson VK,Guo X.Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries.ACS Appl Mater Interfaces2017;9:12461-8

[7]

Jia L,Zhang X,Du Y.Li-solid electrolyte interfaces/interphases in all-solid-state Li batteries.Electrochem Energy Rev2024;7:12

[8]

Li B,Li M.A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries.Electrochem Energy Rev2023;6:7

[9]

Zhang J,Zheng M.Rational design of air-stable and intact anode-electrolyte interface for garnet-type solid-state batteries.Nano Energy2022;102:107672

[10]

Rettenwander D,Laskowski R.DFT study of the role of Al3+ in the fast ion-conductor Li7-3xAl3+xLa3Zr2O12 garnet.Chem Mater2014;26:2617-23 PMCID:PMC4311941

[11]

El-Shinawi H,Maclaren DA,Corr SA.Low-temperature densification of Al-doped Li7La3Zr2O12: a reliable and controllable synthesis of fast-ion conducting garnets.J Mater Chem A2017;5:319-29

[12]

Wagner R,Rettenwander D.Fast Li-ion-conducting garnet-related Li7-3xFexLa3Zr2O12 with uncommon I4̅3d structure.Chem Mater2016;28:5943-51 PMCID:PMC4997531

[13]

Wu JF,Yu Y.Gallium-Doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity.ACS Appl Mater Interfaces2017;9:1542-52

[14]

Deviannapoorani C,Ramakumar S.Investigation on lithium ion conductivity and structural stability of yttrium-substituted Li7La3Zr2O12.Ionics2016;22:1281-9

[15]

Rangasamy E,Allen J.The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7-xLa3-xAxZr2O12 garnet-based ceramic electrolyte.J Power Sources2013;230:261-6

[16]

Ohta S,Asaoka T.High lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr2-x, Nbx)O12 (x=0-2).J Power Sources2011;196:3342-5

[17]

Thompson T,Johannes MD.A tale of two sites: on defining the carrier concentration in garnet-based ionic conductors for advanced Li batteries.Adv Energy Mater2015;5:1500096

[18]

Mukhopadhyay S,Sakamoto J.Structure and stoichiometry in supervalent doped Li7La3Zr2O12.Chem Mater2015;27:3658-65

[19]

Dhivya L.Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li7La3Zr2O12 lithium garnet.ACS Appl Mater Interfaces2014;6:17606-15

[20]

Inada R,Tojo M,Tojo T.Development of lithium-stuffed garnet-type oxide solid electrolytes with high ionic conductivity for application to all-solid-state batteries.Front Energy Res2016;4:28

[21]

Chen C,He L.Microstructural and electrochemical properties of Al- and Ga-doped Li7La3Zr2O12 garnet solid electrolytes.ACS Appl Energy Mater2020;3:4708-19

[22]

Cao Z,Liu X.Effect of Sb-Ba codoping on the ionic conductivity of Li7La3Zr2O12 ceramic.Ceram Int2015;41:6232-6

[23]

Meesala Y,Jena A.An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12.J Mater Chem A2019;7:8589-601

[24]

Murugan R,Weppner W.Fast lithium ion conduction in garnet-type Li7La3Zr2O12.Angew Chem Int Ed2007;46:7778-81

[25]

Zhang J,Zhai H,Tang X.One-step processing of soft electrolyte/metallic lithium interface for high-performance solid-state lithium batteries.ACS Appl Energy Mater2020;3:6139-45

[26]

Ihrig M,Scheld WS.Li7La3Zr2O12 solid electrolyte sintered by the ultrafast high-temperature method.J Eur Ceram Soc2021;41:6075-9

[27]

Zhu Y,Li W,Yang J.Realization of superior ionic conductivity by manipulating the atomic rearrangement in Al-doped Li7La3Zr2O12.Ceram Int2023;49:10462-70

[28]

Cronau M,König C,Roling B.How to measure a reliable ionic conductivity? The stack pressure dilemma of microcrystalline sulfide-based solid electrolytes.ACS Energy Lett2021;6:3072-7

[29]

Lee C,Lewis JA.Stack pressure measurements to probe the evolution of the lithium-solid-state electrolyte interface.ACS Energy Lett2021;6:3261-9

[30]

Hosokawa H,Inada R.Tolerance for Li dendrite penetration in Ta-doped Li7La3Zr2O12 solid electrolytes sintered with Li2.3C0.7B0.3O3 additive.Mater Lett2020;279:128481

[31]

Janani N,Kannan S.Optimization of lithium content and sintering aid for maximized Li+ conductivity and density in Ta-doped Li7La3Zr2O12.J Am Ceram Soc2015;98:2039-46

[32]

Ni KH,Li CC.Densification and stress distribution within the sintered structure of ceramic electrolytes for all-solid-state Li-ion batteries.Acta Mater2024;275:120057

[33]

Shen F,Zeng D.A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte.ACS Appl Mater Interfaces2020;12:30313-9

[34]

Xu B,Duan H.Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression.J Power Sources2017;354:68-73

[35]

Yamada H,Hongahally Basappa R.Sintering mechanisms of high-performance garnet-type solid electrolyte densified by spark plasma sintering.Electrochim Acta2016;222:648-56

[36]

Zhang H,Zhu J.Fusing Ta-doped Li7La3Zr2O12 grains using nanoscale Y2O3 sintering aids for high-performance solid-state lithium batteries.Nanoscale2024;16:14871-8

[37]

Zhang W.Effects of CuO on the microstructure and electrochemical properties of garnet-type Li6.3La3Zr1.65W0.35O12 solid electrolyte.J Phys Chem Solids2019;135:109080

PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

/