Improved interfacial li-ion transport in composite polymer electrolytes via surface modification of LLZO

Michael J. Counihan , Jungkuk Lee , Priyadarshini Mirmira , Pallab Barai , Meghan E. Burns , Chibueze V. Amanchukwu , Venkat Srinivasan , Yuepeng Zhang , Sanja Tepavcevic

Energy Materials ›› 2025, Vol. 5 ›› Issue (3) : 500032

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (3) :500032 DOI: 10.20517/energymater.2024.195
Article

Improved interfacial li-ion transport in composite polymer electrolytes via surface modification of LLZO

Author information +
History +
PDF

Abstract

Composite polymer electrolytes that incorporate ceramic fillers in a polymer matrix offer mechanical strength and flexibility as solid electrolytes for lithium metal batteries. However, fast Li+ transport between polymer and Li+-conductive filler phases is not a simple achievement due to high barriers for Li+ exchange across the interphase. This study demonstrates how modification of Li7La3Zr2O12 (LLZO) nanofiller surfaces with silane chemistries influences Li+ transport at local and global electrolyte scales. Anhydrous reactions covalently link amine-functionalized silanes [(3-aminopropyl)triethoxysilane (APTES)] to LLZO nanoparticles, which protects LLZO in air. APTES functionalization lowers the poly (ethylene oxide) (PEO)-LLZO interphase resistance to half that of unmodified LLZO and increases effective Li+ transference number, while insulating Al2O3 completely blocks ion exchange and lowers transference number and conductivity in PEO-lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-LLZO composites. Modeling an inner resistive interphase between LLZO and PEO surrounded by an outer conductive interphase explains non-linear conductivity trends. Solid-state 7Li & 6Li nuclear magnetic resonance shows Li+ only exchanges between PEO-LiTFSI and some LLZO interphase, with no appreciable Li+ transport through bulk LLZO. Surface functionalization is a promising path toward lowering the polymer-ceramic interphase resistance. This work demonstrates that local changes in Li+ transport affect macroscopic performance, highlighting the intricate relationships between all interfaces in inherently heterogeneous composite polymer electrolytes.

Keywords

Composite polymer electrolyte / LLZO / interface / interphase / silane / lithium vacancies / ion transport

Cite this article

Download citation ▾
Michael J. Counihan, Jungkuk Lee, Priyadarshini Mirmira, Pallab Barai, Meghan E. Burns, Chibueze V. Amanchukwu, Venkat Srinivasan, Yuepeng Zhang, Sanja Tepavcevic. Improved interfacial li-ion transport in composite polymer electrolytes via surface modification of LLZO. Energy Materials, 2025, 5(3): 500032 DOI:10.20517/energymater.2024.195

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grundish NS,Khani H.Designing composite polymer electrolytes for all-solid-state lithium batteries.Curr Opin Electrochem2021;30:100828

[2]

Yao P,Ding Z.Review on polymer-based composite electrolytes for lithium batteries.Front Chem2019;7:522 PMCID:PMC6694289

[3]

Yu X.A review of composite polymer-ceramic electrolytes for lithium batteries.Energy Storage Mater2021;34:282-300

[4]

Meng N,Lian F.Particles in composite polymer electrolyte for solid-state lithium batteries: a review.Particuology2022;60:14-36

[5]

Bonnick P.The quest for the holy grail of solid-state lithium batteries.Energy Environ Sci2022;15:1840-60

[6]

Lu X,Xu X,Wu T.Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries - review.Adv Energy Mater2023;13:2301746

[7]

Zagórski J,Cordill MJ,Buannic L.Garnet-polymer composite electrolytes: new insights on local Li-ion dynamics and electrodeposition stability with Li metal anodes.ACS Appl Energy Mater2019;2:1734-46

[8]

Yang T,Cheng Q,Chan CK.Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology.ACS Appl Mater Interfaces2017;9:21773-80

[9]

Din MMU,Fischer SM.Role of filler content and morphology in LLZO/PEO membranes.Front Energy Res2021;9:711610

[10]

Counihan MJ,Barai P.Understanding the influence of Li7La3Zr2O12 nanofibers on critical current density and coulombic efficiency in composite polymer electrolytes.ACS Appl Mater Interfaces2023;15:26047-59

[11]

Chan CK,Mark Weller J.Nanostructured garnet-type Li7La3Zr2O12: synthesis, properties, and opportunities as electrolytes for Li-ion batteries.Electrochim Acta2017;253:268-80

[12]

Bonilla MR,Ranque P,Carrasco J.Unveiling interfacial Li-ion dynamics in Li7La3Zr2O12/PEO(LiTFSI) composite polymer-ceramic solid electrolytes for all-solid-state lithium batteries.ACS Appl Mater Interfaces2021;13:30653-67

[13]

Brogioli D,Kun R.Space-charge effects at the Li7La3Zr2O12/poly(ethylene oxide) interface.ACS Appl Mater Interfaces2019;11:11999-2007

[14]

Ranque P,Devaraj S,López del Amo JM.Characterization of the interfacial Li-ion exchange process in a ceramic-polymer composite by solid state NMR.J Mater Chem A2021;9:17812-20

[15]

Kondori A,Harzandi AM.A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte.Science2023;379:499-505

[16]

Yan C,Jia H.Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries.Energy Storage Mater2020;26:448-56

[17]

Kuhnert E,Jodlbauer A.Lowering the interfacial resistance in Li6.4La3Zr1.4Ta0.6O12|poly(ethylene oxide) composite electrolytes.Cell Rep Phys Sci2020;1:100214

[18]

Hou W,Wang S.A “concentrated ionogel-in-ceramic” silanization composite electrolyte with superior bulk conductivity and low interfacial resistance for quasi-solid-state Li metal batteries.Energy Environ Mater2024;7:e12736

[19]

Helmers L,Brokmann J.Functionalized thiophosphate and oxidic filler particles for hybrid solid electrolytes.ChemElectroChem2023;10:e202300310

[20]

Yu D,McCloskey BD.Lithium-ion transport and exchange between phases in a concentrated liquid electrolyte containing lithium-ion-conducting inorganic particles.ACS Energy Lett2024;9:1717-24 PMCID:PMC11019636

[21]

Ihrig M,Tsai C.Low temperature sintering of fully inorganic all-solid-state batteries - impact of interfaces on full cell performance.J Power Sources2021;482:228905

[22]

Cheng L,Mehta A.Garnet electrolyte surface degradation and recovery.ACS Appl Energy Mater2018;1:7244-52

[23]

Larraz G,Sanjuán ML.Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration.J Mater Chem A2013;1:11419

[24]

Gupta A.Controlling ionic transport through the PEO-LiTFSI/LLZTO interface.Electrochem Soc Interface2019;28:63-9

[25]

Evans J,Bruce PG.Electrochemical measurement of transference numbers in polymer electrolytes.Polymer1987;28:2324-8

[26]

Huo H,Zhao N.In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries.Nano Energy2019;61:119-25

[27]

Ruan Y,Huang X.Acid induced conversion towards a robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state batteries.J Mater Chem A2019;7:14565-74

[28]

Guo Y,Zeng Z.Li2CO3: insights into its blocking effect on Li-ion transfer in garnet composite electrolytes.ACS Appl Energy Mater2022;5:2853-61

[29]

Besli MM,Metzger M.Effect of liquid electrolyte soaking on the interfacial resistance of Li7La3Zr2O12 for all-solid-state lithium batteries.ACS Appl Mater Interfaces2020;12:20605-12

[30]

Liu X,Hood ZD.Elucidating the mobility of H+ and Li+ ions in (Li6.25-xHxAl0.25)La3Zr2O12 via correlative neutron and electron spectroscopy.Energy Environ Sci2019;12:945-51

[31]

Orera A,Rodríguez-Velamazán JA,Sanjuán ML.Influence of Li+ and H+ distribution on the crystal structure of Li7-xHxLa3Zr2O12 (0 ≤ x ≤ 5) garnets.Inorg Chem2016;55:1324-32

[32]

Hiebl C,Wagner R,Redhammer GJ.Proton bulk diffusion in cubic Li7La3Zr2O12 garnets as probed by single X-ray diffraction.J Phys Chem C2019;123:1094-8

[33]

Rosen M,Mann M.Controlling the lithium proton exchange of LLZO to enable reproducible processing and performance optimization.J Mater Chem A2021;9:4831-40

[34]

Grissa R,Heinz M.Impact of protonation on the electrochemical performance of Li7La3Zr2O12 garnets.ACS Appl Mater Interfaces2021;13:14700-9

[35]

Zaman W,Dixit MB,Hatzell KB.Visualizing percolation and ion transport in hybrid solid electrolytes for Li-metal batteries.J Mater Chem A2019;7:23914-21

[36]

Gao KW,Halat DM,Newman J.The transference number.Energy Environ Mater2022;5:366-9

[37]

Chintapalli M,Olson KR.Relationship between conductivity, ion diffusion, and transference number in perfluoropolyether electrolytes.Macromolecules2016;49:3508-15

[38]

Kim H,Chavan K.Transport and mechanical behavior in PEO-LLZO composite electrolytes.J Solid State Electrochem2022;26:2059-75

[39]

Dissanayake M,Bokalawala R,Mellander B.Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3:Al2O3 composite polymer electrolyte.J Power Sources2003;119-121:409-14

[40]

Zheng J,Feng X,Hu Y.Li-ion transport in a representative ceramic-polymer-plasticizer composite electrolyte: Li7La3Zr2O12-polyethylene oxide-tetraethylene glycol dimethyl ether.J Mater Chem A2017;5:18457-63

[41]

Chen XC,Samuthira Pandian A,Delnick FM.Determining and minimizing resistance for ion transport at the polymer/ceramic electrolyte interface.ACS Energy Lett2019;4:1080-5

[42]

Vadhva P,Johnson MJ.Electrochemical impedance spectroscopy for all-solid-state batteries: theory, methods and future outlook.ChemElectroChem2021;8:1930-47

[43]

Isaac JA,Devaux D.Electrochemical impedance spectroscopy of PEO-LATP model multilayers: ionic charge transport and transfer.ACS Appl Mater Interfaces2022;14:13158-68 PMCID:PMC8949763

[44]

Kremer S,Sigar U.A simple method for the study of heteroionic interface impedances in solid electrolyte multilayer cells containing LLZO.ACS Appl Mater Interfaces2024;16:44236-48

[45]

Tenhaeff WE,Dudney NJ.Impedance characterization of Li ion transport at the interface between laminated ceramic and polymeric electrolytes.J Electrochem Soc2012;159:A2118-23

[46]

Dong BX,Kambe Y.Nanothin film conductivity measurements reveal interfacial influence on ion transport in polymer electrolytes.Mol Syst Des Eng2019;4:597-608

[47]

Wang J,Du Q.Lithium ion transport in solid polymer electrolyte filled with alumina nanoparticles.Energy Adv2022;1:269-76

[48]

Eriksson T,Yue M.Effects of nanoparticle addition to poly(ε-caprolactone) electrolytes: crystallinity, conductivity and ambient temperature battery cycling.Electrochim Acta2019;300:489-96

[49]

St-onge V,Rochon S,Claverie JP.Reducing crystallinity in solid polymer electrolytes for lithium-metal batteries via statistical copolymerization.Commun Mater2021;2:187

[50]

Li Z,Zhu JK.Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites.ACS Appl Mater Interfaces2019;11:784-91

[51]

Jayathilaka P,Albinsson I.Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system.Electrochim Acta2002;47:3257-68

[52]

Zheng J,Hu YY.Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes.Angew Chem Int Ed2016;55:12538-42

[53]

Zheng J.New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes.ACS Appl Mater Interfaces2018;10:4113-20

[54]

Wu N,Qian Y.Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte.Angew Chem Int Ed2020;59:4131-7

[55]

Mirmira P,Gillett W.Nonconductive polymers enable higher ionic conductivities and suppress reactivity in hybrid sulfide-polymer solid state electrolytes.ACS Appl Energy Mater2022;5:8900-12

[56]

Eckhardt JK,Janek J.Interplay of dynamic constriction and interface morphology between reversible metal anode and solid electrolyte in solid state batteries.ACS Appl Mater Interfaces2022;14:35545-54

[57]

Eckhardt JK,Burkhardt S,Janek J.3D impedance modeling of metal anodes in solid-state batteries-incompatibility of pore formation and constriction effect in physical-based 1D circuit models.ACS Appl Mater Interfaces2022;14:42757-69

[58]

Eckhardt JK,Fuchs T.Influence of microstructure on the material properties of LLZO ceramics derived by impedance spectroscopy and brick layer model analysis.ACS Appl Mater Interfaces2023;15:47260-77

[59]

Liu K,Sun J,Zhao T.Polyoxyethylene (PEO)|PEO-perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries.ACS Appl Mater Interfaces2019;11:46930-7

[60]

Kim H,Srinivasan V.Continuum description of the role of negative transference numbers on ion motion in polymer electrolytes.J Electrochem Soc2020;167:110559

[61]

Roering P,Liu KL,Brunklaus G.External pressure in polymer-based lithium metal batteries: an often-neglected criterion when evaluating cycling performance?.ACS Appl Mater Interfaces2024;16:21932-42 PMCID:PMC11071043

[62]

Counihan MJ,Barai P.The phantom menace of dynamic soft-shorts in solid-state battery research.Joule2024;8:64-90

[63]

Fuchs T,Richter FH,Janek J.Evaluating the use of critical current density tests of symmetric lithium transference cells with solid electrolytes.Adv Energy Mater2023;13:2302383

[64]

Li Z,Zhou X.Ionic conduction in polymer-based solid electrolytes.Adv Sci2023;10:e2201718

[65]

Harry KJ,Parkinson DY,Balsara NP.Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes.Nat Mater2014;13:69-73

[66]

Gribble DA,Shah DB.Comparing experimental measurements of limiting current in polymer electrolytes with theoretical predictions.J Electrochem Soc2019;166:A3228-34

[67]

Maslyn JA,Veeraraghavan VD.Limiting current in nanostructured block copolymer electrolytes.Macromolecules2021;54:4010-22

[68]

Lee J,Hoffman ZJ,Balsara NP.Experimental platform for determining the maximum limiting current in a polymer electrolyte.ACS Energy Lett2024;9:1796-802

[69]

Soulen C,Holoubek J.Bridging the gap between pouch and coin cell electrochemical performance in lithium metal batteries.J Electrochem Soc2024;171:020535

PDF

208

Accesses

0

Citation

Detail

Sections
Recommended

/