Catalyzed carbon-based materials for CO2-battery utilization

Yulian Dong , Changfan Xu , Yonghuan Fu , Huaping Zhao , Yong Lei

Energy Materials ›› 2025, Vol. 5 ›› Issue (4) : 500039

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (4) :500039 DOI: 10.20517/energymater.2024.194
Review

Catalyzed carbon-based materials for CO2-battery utilization

Author information +
History +
PDF

Abstract

Increasing atmospheric CO2 levels and global carbon neutrality goals have driven interest in technologies that both mitigate CO2 emissions and provide sustainable energy storage solutions. Metal-carbon dioxide (M-CO2) batteries offer significant promise due to their high energy density and potential to utilize atmospheric CO2. A key challenge in advancing M-CO2 batteries lies in optimizing CO2-breathing cathodes, which are essential for CO2 adsorption, diffusion, and conversion. Carbon-based cathodes play a critical role in facilitating CO2 redox for M-CO2 batteries, owing to their cost-effectiveness, high conductivity, tunable microstructure, and porosity. However, there is a lack of current systematic understanding of the relationship between the structure, composition, and catalytic properties of carbon-based cathodes, as well as their impact on the overall efficiency, stability, and durability of M-CO2 batteries. In this review, we will give an insightful review and analysis of recent advances in various carbon-based materials, including commercial carbons, single-atom catalysts, transition metal/carbon composites, metal-organic frameworks, etc., focusing on their structure-function-property relationships. A comprehensive understanding of the pivotal role played by carbon-based materials and their optimization strategies in M-CO2 batteries will be provided. Moreover, future perspectives and research suggestions for carbon-based materials are presented to advance the development and innovation of M-CO2 batteries.

Keywords

Carbon-based materials / electrocatalysts / CO2 utilization / CO2 batteries / CO2 reduction reaction

Cite this article

Download citation ▾
Yulian Dong, Changfan Xu, Yonghuan Fu, Huaping Zhao, Yong Lei. Catalyzed carbon-based materials for CO2-battery utilization. Energy Materials, 2025, 5(4): 500039 DOI:10.20517/energymater.2024.194

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lu S,Liu Q.Recent advances in novel materials for photocatalytic carbon dioxide reduction.Carbon Neutralization2024;3:142-68

[2]

Feng D,Guo H.Conjugated polyimides modified self-supported carbon electrodes for electrochemical conversion of CO2 to CO.Energy Mater2024;4:400069

[3]

Zheng Z,Gu Q,Wang J.Research progress and future perspectives on rechargeable Na-O2 and Na-CO2 batteries.Energy Environ Mater2021;4:158-77

[4]

Nyhus AH,Shah N.Green ethylene production in the UK by 2035: a techno-economic assessment.Energy Environ Sci2024;17:1931-49

[5]

Ramadhany P,Zhang Z.State of play of critical mineral-based catalysts for electrochemical E-refinery to synthetic fuels.Adv Mater2024;36:e2405029

[6]

Fang W,Li FM.Low-coordination nanocrystalline copper-based catalysts through theory-guided electrochemical restructuring for selective CO2 reduction to ethylene.Angew Chem Int Ed2024;63:e202319936

[7]

Xu C,Zhao H.CO2 conversion toward real-world applications: electrocatalysis versus CO2 batteries.Adv Funct Mater2023;33:2300926

[8]

Dong Y,Zhao H.Recent advances in 2D heterostructures as advanced electrode materials for potassium-ion batteries.Small Struct2022;3:2100221

[9]

Aslam MK,Chen S,Duan J.Progress and perspectives of metal (Li, Na, Al, Zn and K)-CO2 batteries.Mater Today Energy2023;31:101196

[10]

Zou J,Zhang F,Davey K.Revisiting the role of discharge products in Li-CO2 batteries.Adv Mater2023;35:e2210671

[11]

Ampelli C,Giusi D,Perathoner S.Electrode and cell design for CO2 reduction: a viewpoint.Catal Today2023;421:114217

[12]

Li X,Li Z.Rational design of covalent organic frameworks as gas diffusion layers for multi-atmosphere lithium-air batteries.Angew Chem Int Ed2023;62:e202217869

[13]

Wang Z,Lu L.Recent progress and perspectives of solid state Na-CO2 batteries.Batteries2023;9:36

[14]

Song W,Ding J.Review of carbon support coordination environments for single metal atom electrocatalysts (SACS).Adv Mater2024;36:e2301477

[15]

Wang Y,Zeng J.Single atom catalysts for fuel cells and rechargeable batteries: principles, advances, and opportunities.ACS Nano2021;15:210-39

[16]

Shah SSA,Bashir MS,Nazir MA.Single-atom catalysts for next-generation rechargeable batteries and fuel cells.Energy Storage Mate2022;45:301-22

[17]

Lin J,Xiao C.A comprehensive overview of the electrochemical mechanisms in emerging alkali metal-carbon dioxide batteries.Carbon Energy2023;5:e313

[18]

Liu W,Zhang Z.Advancements in metal-CO2 battery technology: a comprehensive overview.Nano Energy2024;129:109998

[19]

Douka AI,Huang L.Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable zinc-air batteries.EcoMat2021;3:e12067

[20]

Xu Y,Ren H.Highly efficient Cu-porphyrin-based metal-organic framework nanosheet as cathode for high-rate Li-CO2 battery.Small2022;18:e2203917

[21]

Zhao C,Yao T.Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2.J Am Chem Soc2017;139:8078-81

[22]

Gao S,Lu Z.Isolated FeN3 sites anchored hierarchical porous carbon nanoboxes for hydrazine-assisted rechargeable Zn-CO2 batteries with ultralow charge voltage.Carbon Energy2024;e637

[23]

Yang X,Zhao L.Upgrading cycling stability and capability of hybrid Na-CO2 batteries via tailoring reaction environment for efficient conversion CO2 to HCOOH.Adv Energy Mater2024;14:2304365

[24]

Xu C,Dong Y.Multiscale defective interfaces for realizing Na-CO2 batteries with ultralong lifespan.Adv Mater2024;36:e2409533 PMCID:PMC11602679

[25]

Xu C,Shen Y.Fundamental understanding of nonaqueous and hybrid Na-CO2 batteries: challenges and perspectives.Small2023;19:e2206445

[26]

Li C,Yue M.Recent advances in pristine iron triad metal-organic framework cathodes for alkali metal-ion batteries.Small2024;20:e2310373

[27]

Tan C,Cao D.Unravelling the complex Na2CO3 electrochemical process in rechargeable Na-CO2 batteries.Adv Energy Mater2023;13:2204191

[28]

Liu Y,Chen B.Atomic design of bidirectional electrocatalysts for reversible Li-CO2 batteries.Mater Today2023;63:120-36

[29]

Chen H,Xue H.Recent advances in the mechanism and catalyst design in the research of aprotic, photo-assisted, and solid-state Li-CO2 batteries.Inorg Chem Front2024;11:5833-57

[30]

Xie Z,Zhang Z.Metal-CO2 batteries on the road: CO2 from contamination gas to energy source.Adv Mater2017;29:1605891

[31]

Jaradat A,Papailias I.Fast charge-transfer rates in Li-CO2 batteries with a coupled cation-electron transfer process.Adv Energy Mater2024;14:2303467

[32]

Xu C,Zhan J,Liang F.Progress for Metal-CO2 batteries: mechanism and advanced materials.Prog Chem2020;32:836

[33]

Xu C,Zhan J,Liang F.Engineering NH3-induced 1D self-assembly architecture with conductive polymer for advanced hybrid Na-CO2 batteries via morphology modulation.J Power Sources2022;520:230909

[34]

Hou Y,Liu L.Mo2C/CNT: an efficient catalyst for rechargeable Li-CO2 batteries.Adv Funct Mater2017;27:1700564

[35]

Zou L,Liu J.Understanding Li2c2o4 stabilization in reversible Li-Co2 batteries via Li+ solvation structure and Mo2+ active sites. 2024.

[36]

Zhou J,Yang C.A quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency.Adv Mater2019;31:e1804439

[37]

Wang Y,Song L,Xu J.A highly reversible lithium-carbon dioxide battery based on soluble oxalate.ACS Energy Lett2023;8:1026-34

[38]

Jayan R.Understanding catalytic mechanisms and cathode interface kinetics in nonaqueous Mg-CO2 batteries.ACS Appl Mater Interfaces2023;15:45895-904

[39]

Yang C,Yuan D,Wang B.Unraveling reaction mechanisms of Mo2C as cathode catalyst in a Li-CO2 battery.J Am Chem Soc2020;142:6983-90

[40]

Jian T,Hou J,Xu C.From Ru to RuAl intermetallic/Ru heterojunction: Enabling high reversibility of the CO2 redox reaction in Li-CO2 battery based on lowered interface thermodynamic energy barrier.Nano Energy2023;118:108998

[41]

Hu J,Guo K.Understanding the electrochemical reaction mechanisms of precious metals Au and Ru as cathode catalysts in Li-CO2 batteries.J Mater Chem A2022;10:14028-40

[42]

Gupta D,Guo Z.Bifunctional catalysts for co2 reduction and O2 evolution: a pivotal for aqueous rechargeable Zn-CO2 batteries.Adv Mater2024;36:e2407099

[43]

Pan Q,Wang H.Approaching splendid catalysts for Li-CO2 battery from the theory to practical designing: a review.Adv Mater2024;36:e2406905

[44]

Guo W,Yi Q.Research progress of aqueous Zn-CO2 battery: design principle and development strategy of a multifunctional catalyst.Front Energy Res2023;11:1194674

[45]

Mu X,He P.Li-CO2 and Na-CO2 Batteries: toward greener and sustainable electrical energy storage.Adv Mater2020;32:e1903790

[46]

Cheng Y,Chen B.Routes to bidirectional cathodes for reversible aprotic alkali metal-CO2 batteries.Adv Mater2024;36:e2410704

[47]

Yue J,Tong Y.Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime.Nat Chem2021;13:1061-9

[48]

Liang Y.Designing modern aqueous batteries.Nat Rev Mater2023;8:109-22

[49]

Gao S,Xie Z.Metal-free bifunctional ordered mesoporous carbon for reversible Zn-CO2 batteries.Small Methods2021;5:e2001039

[50]

Joseph S,Lee JM.Hierarchical carbon structures from soft drink for multi-functional energy applications of Li-ion battery, Na-ion battery and CO2 capture.Carbon2023;210:118085

[51]

Larcher D.Towards greener and more sustainable batteries for electrical energy storage.Nat Chem2015;7:19-29

[52]

Xiao X,Tan P.Unveiling the mysteries of operating voltages of lithium-carbon dioxide batteries.Proc Natl Acad Sci USA2023;120:e2217454120 PMCID:PMC9963884

[53]

Xu L,Liu K.Single atom environmental catalysis: influence of supports and coordination environments.Adv Funct Mater2023;33:2304468

[54]

Liang S,Gao Y,Liu B.Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: the active sites and reaction mechanism.Adv Sci2021;8:e2102886 PMCID:PMC8693035

[55]

Sarkar A,Yi CH.Recent advances in rechargeable metal-CO2 batteries with nonaqueous electrolytes.Chem Rev2023;123:9497-564

[56]

Han J,Rong J.Molecular engineering of porous Fe-N-C catalyst with sulfur incorporation for boosting CO2 reduction and Zn-CO2 battery.Adv Sci2024;11:e2407063 PMCID:PMC11481232

[57]

Sun X,Zheng W.Binuclear Cu complex catalysis enabling Li-CO2 battery with a high discharge voltage above 3.0 V.Nat Commun2023;14:536 PMCID:PMC9892515

[58]

Ci L,Jin C.Atomic layers of hybridized boron nitride and graphene domains.Nat Mater2010;9:430-5

[59]

Yang S,He P.A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst.Energy Environ Sci2017;10:972-8

[60]

Guo L,Thirumal V.Advanced rechargeable Na-CO2 batteries enabled by a ruthenium@porous carbon composite cathode with enhanced Na2CO3 reversibility.Chem Commun2019;55:7946-9

[61]

Xiao X,Zhu X,Cheng C.Investigation on the discharge and charge behaviors of Li-CO2 batteries with carbon nanotube electrodes.ACS Sustain Chem Eng2020;8:9742-50

[62]

Sun J,Yang H,Shao L.Rechargeable Na-CO2 batteries starting from cathode of Na2CO3 and carbon nanotubes.Research2018;2018:6914626 PMCID:PMC6750045

[63]

Kong Y,Song L,Wang T.Nano-sized Au particle-modified carbon nanotubes as an effective and stable cathode for Li-CO2 batteries.Eur J Inorg Chem2021;2021:590-6

[64]

Yoo E.Li-air rechargeable battery based on metal-free graphene nanosheet catalysts.ACS Nano2011;5:3020-6

[65]

Xiao J,Li X.Hierarchically porous graphene as a lithium-air battery electrode.Nano Lett2011;11:5071-8

[66]

Zhang Z,Chen Y.The first introduction of graphene to rechargeable Li-CO2 batteries.Angew Chem Int Ed2015;127:6650-3

[67]

Ye F,Long Y.Topological defect-rich carbon as a metal-free cathode catalyst for high-performance Li-CO2 batteries.Adv Energy Mater2021;11:2101390

[68]

Yuan C,Jiang Y.Tuning the activity of N-doped carbon for CO2 reduction via in situ encapsulation of nickel nanoparticles into nano-hybrid carbon substrates.J Mater Chem A2019;7:6894-900

[69]

Song A,Yang W.In situ construction of nitrogen-doped graphene with surface-grown carbon nanotubes as a multifactorial synergistic catalyst for oxygen reduction.Carbon2019;142:40-50

[70]

Gottlieb E,Kowalewski T.Polymer-based synthetic routes to carbon-based metal-free catalysts.Adv Mater2019;31:e1804626

[71]

Dong Y,Tian Z.Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction.Adv Mater2020;32:e2001300

[72]

Tan G,Amine R.Toward highly efficient electrocatalyst for Li-O2 batteries using biphasic N-doping Cobalt@Graphene multiple-capsule heterostructures.Nano Lett2017;17:2959-66

[73]

Li Y,Zhang T.Highly surface-wrinkled and N-doped CNTs anchored on metal wire: a novel fiber-shaped cathode toward high-performance flexible Li-CO2 batteries.Adv Funct Mater2019;29:1808117

[74]

Xu C,Zhang D.Reversible hybrid sodium-CO2 batteries with low charging voltage and long-life.Nano Energy2020;68:104318

[75]

Xu C,Wang H,Liang F.Dense binary Fe-Cu sites promoting CO2 utilization enable highly reversible hybrid Na-CO2 batteries.J Mater Chem A2021;9:22114-28

[76]

Chen B,Zhang B.Engineering the active sites of graphene catalyst: from CO2 activation to activate Li-CO2 batteries.ACS Nano2021;15:9841-50

[77]

Li X,Zhang J,Wang B.Artificial solid-electrolyte interphase and bamboo-like N-doped carbon nanotube enabled highly rechargeable K-CO2 batteries.Adv Funct Mater2022;32:2105029

[78]

Ma G,Wei Q.S-doped carbon materials: synthesis, properties and applications.Carbon2022;195:328-40

[79]

Sun T,Liu J.Strengthened d-p orbital-hybridization of single atoms with sulfur species induced bidirectional catalysis for lithium-sulfur batteries.Adv Funct Mater2023;33:2306049

[80]

Dong C,Zhou C.Engineering d-p orbital hybridization with P, S Co-coordination asymmetric configuration of single atoms toward high-rate and long-cycling lithium-sulfur battery.Adv Mater2024;36:e2407070

[81]

Wang G,Jia J.Nitrogen and sulfur co-doped carbon nanosheets for electrochemical reduction of CO2.ChemCatChem2020;12:2203-8

[82]

Huang K,Qi H.Regulating adsorption of intermediates via the sulfur modulating dual-atomic sites for boosting CO2 RR.ACS Catal2024;14:8889-98

[83]

Zhang Z,Wang K.Electrocatalyst design for aprotic Li-CO2 batteries.Energy Environ Sci2020;13:4717-37

[84]

Balu S,Venkatesvaran H,Yang TC.Recent progress in surface-defect engineering strategies for electrocatalysts toward electrochemical CO2 reduction: a review.Catalysts2023;13:393

[85]

Wang Y,Chen B.p-band regulation guides the free-standing porous carbon electrode for efficient Na-CO2 batteries.Energy Storage Mater2024;71:103655

[86]

Song L,Xiao Y.An ultra-long life, high-performance, flexible Li-CO2 battery based on multifunctional carbon electrocatalysts.Nano Energy2020;71:104595

[87]

Qie L,Connell JW,Dai L.Highly rechargeable lithium-CO2 batteries with a boron- and nitrogen-codoped holey-graphene cathode.Angew Chem Int Ed2017;56:6970-4

[88]

Kaur S,Gupta D.Efficient CO2 utilization and sustainable energy conversion via aqueous Zn-CO2 batteries.Nano Energy2023;109:108242

[89]

Gao M,Wang R,Guo Z.Noble metal catalysts for metal-air batteries: from nano-level to atom-level.Next Mater2024;2:100126

[90]

Yu A,Zhang W.Molten salt electrolytic CO2-derived carbon-based nanomaterials for energy storage and electrocatalysis: a review.ACS Appl Nano Mater2024;7:27960-78

[91]

Wang F,Li Z,Chu K.Selective urea electrosynthesis from nitrate and CO2 on isolated copper alloyed ruthenium.ACS Energy Lett2024;9:4624-32

[92]

Liu Z,Guo Y,Sun R.Photocatalytic CO2 reduction integrated with biomass selective oxidation via single-atom Ru and P dual sites on carbon nitride.Appl Catal B Environ2024;342:123429

[93]

Qiao Y,Wu S.Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage.Joule2017;1:359-70

[94]

Lin J,Wang H.Boosting energy efficiency and stability of Li-CO2 batteries via synergy between Ru atom clusters and single-atom Ru-N4 sites in the electrocatalyst cathode.Adv Mater2022;34:e2200559

[95]

Thoka S,Tong Z.Comparative study of Li-CO2 and Na-CO2 batteries with Ru@CNT as a cathode catalyst.ACS Appl Mater Interfaces2021;13:480-90

[96]

Zhao J,Chen J.Ultrafine Ru nanoparticles anchored on N-doped mesoporous hollow carbon spheres as a highly efficient bifunctional catalyst for Li-CO2 batteries.J Power Sources2024;607:234577

[97]

Lian Z,Wang C.Single-atom Ru implanted on Co3O4 nanosheets as efficient dual-catalyst for Li-CO2 batteries.Adv Sci2021;8:2102550 PMCID:PMC8655220

[98]

Xu C,Dong Y.Dual-functional electrode promoting dendrite-free and CO2 utilization enabled high-reversible symmetric Na-CO2 batteries.Energy Environ Mater2024;7:e12626

[99]

Chen S,Zhu H.Rational catalyst structural design to facilitate reversible Li-CO2 batteries with boosted CO2 conversion kinetics.Nano Energy2023;117:108872

[100]

Rho Y,Ryu W.Research trends on minimizing the size of noble metal catalysts for Li-CO2 batteries: from nanoparticle to single atom.Korean J Chem Eng2023;40:461-72

[101]

Najafli E,Foroozan A,Higgins DC.Functionalization of CO2-derived carbon support as a pathway to enhancing the oxygen reduction reaction performance of Pt electrocatalysts.Energy Fuels2024;38:15601-10

[102]

Chen Z,Tang Z,Zeng G.Magnetron sputtering of platinum on nitrogen-doped polypyrrole carbon nanotubes as an efficient and stable cathode for lithium-carbon dioxide batteries.Phys Chem Chem Phys2023;25:7662-8

[103]

Zhang PF,Dong YY.Pt nanoparticles confined in a 3D porous FeNC matrix as efficient catalysts for rechargeable Li-CO2/O2 batteries.ACS Appl Mater Interfaces2023;15:2940-50

[104]

Xing Y,Li D.Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries.Adv Mater2018;30:e1803124

[105]

Gu Y,Zeng X.A flexible Li-CO2 batteries with enhanced cycling stability enabled by a IrO2/carbon fiber self-standing cathode.Electrochim Acta2023;443:141951

[106]

Wu G,Zhang Z.Design of ultralong-life Li-CO2 batteries with IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes.J Mater Chem A2020;8:3763-70

[107]

Ma W,Li C.Rechargeable Al-CO2 batteries for reversible utilization of CO2.Adv Mater2018;30:e1801152

[108]

Bagchi D,Singh AK,Peter SC.Potential- and time-dependent dynamic nature of an oxide-derived PdIn nanocatalyst during electrochemical CO2 reduction.ACS Nano2022;16:6185-96

[109]

Zhuang Q,Zhu W.Facile synthesis of MnO/NC nanohybrids toward high-efficiency ORR for zinc-air battery.RSC Adv2024;14:24031-8 PMCID:PMC11290431

[110]

Yang M,Sun J.Highly dispersed Bi clusters for efficient rechargeable Zn-CO2 batteries.Appl Catal B Environ2022;307:121145

[111]

Naik KM,Sharma CS.Nano-interface engineering of NiFe2O4/MoS2/MWCNTs heterostructure catalyst as cathodes in the long-life reversible Li-CO2 mars batteries.Chem Eng J2024;490:151729

[112]

Peng M,Shao P,Wen Z.Cu3P/C nanocomposites for efficient electrocatalytic CO2 reduction and Zn-CO2 battery.J Nanosci Nanotechnol2019;19:3232-6

[113]

Zheng W,Chen H.Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction.Adv Funct Mater2020;30:1907658

[114]

Liu Y,Zhang M.Uncovering the geometry activity of spinel oxides in Li-CO2 battery reactions.ACS Energy Lett2024;9:2173-81

[115]

Xu C,Wang Z.Biomass-derived highly dispersed Co/Co9S8 nanoparticles encapsulated in S, N-co-doped hierarchically porous carbon as an efficient catalyst for hybrid Na-CO2 batteries.Mater Today Energy2021;19:100594

[116]

Liu B,Liu L,Yan X.Advances in manganese-based oxides cathodic electrocatalysts for Li-air batteries.Adv Funct Mater2018;28:1704973

[117]

Bai L,Wen X,Guan J.Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction.App Catal B Environ2019;257:117930

[118]

Wang H,Liu J.The role of manganese-based catalyst in electrocatalytic water splitting: recent research and progress.Mater Today Phy2023;36:101169

[119]

Liu L,Zhao N.Revealing the indispensable role of in situ electrochemically reconstructed Mn(II)/Mn(III) in improving the performance of lithium-carbon dioxide batteries.Adv Mater2024;36:e2403229

[120]

Wang S,Wang D.Recent advances of single-atom catalysts in CO2 conversion.Energy Environ Sci2023;16:2759-803

[121]

Dai Y,Wang C.Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion.Nat Commun2023;14:3382 PMCID:PMC10250324

[122]

Zhang Y,Zhang P,Ran J.Reversed Electron transfer in dual single atom catalyst for boosted photoreduction of CO2.Adv Mater2023;35:e2306923

[123]

Miao K,Yang J.Synergy of Ni nanoclusters and single atom site: size effect on the performance of electrochemical CO2 reduction reaction and rechargeable Zn-CO2 batteries.Adv Funct Mater2024;34:2316824

[124]

Li H,Qin C,Chen K.Porous organic polymers-based single-atom catalysts for sustainable energy-related electrocatalysis.Adv Energy Mater2023;13:2301378

[125]

Zhang W,Wang N.Two-electron redox chemistry via single-atom catalyst for reversible zinc-air batteries.Nat Sustain2024;7:463-73

[126]

Bao Y,Huang Y.Regulating spin polarization via axial nitrogen traction at Fe-N5 sites enhanced electrocatalytic CO2 reduction for Zn-CO2 batteries.Angew Chem Int Ed2024;63:e202406030

[127]

Xu Y,Song L.A highly efficient and free-standing copper single atoms anchored nitrogen-doped carbon nanofiber cathode toward reliable Li-CO2 batteries.Mater Today Energy2022;25:100967

[128]

Zhu K,Choi J.Single-Atom Cadmium-N4 sites for rechargeable Li-CO2 batteries with high capacity and ultra-long lifetime.Adv Funct Mater2023;33:2213841

[129]

Li J,Hao Y.Asymmetric coordinated single-atom Pd sites for high performance CO2 electroreduction and Zn-CO2 battery.Chem Eng J2023;461:141865

[130]

Sun X,He P.Recent advances in rechargeable Li-CO2 batteries.Energy Fuels2021;35:9165-86

[131]

Li S,Zhou J.Carbon dioxide in the cage: manganese metal-organic frameworks for high performance CO2 electrodes in Li-CO2 batteries.Energy Environ Sci2018;11:1318-25

[132]

Li S,Zhou J.Monodispersed MnO nanoparticles in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li-CO2 batteries.Energy Environ Sci2019;12:1046-54

[133]

Li W,Sun X.Boosting a practical Li-CO2 battery through dimerization reaction based on solid redox mediator.Nat Commun2024;15:803 PMCID:PMC11258291

[134]

Lu M,Liu J.Covalent organic framework based functional materials: important catalysts for efficient CO2 utilization.Angew Chem Int Ed2022;134:e202200003

[135]

Sun C,Wang B.Covalent organic frameworks for extracting water from air.Angew Chem Int Ed2023;135:e202303378

[136]

Nguyen HL,Hanikel N,Lund A.Hydrazine-hydrazide-linked covalent organic frameworks for water harvesting.ACS Cent Sci2022;8:926-32 PMCID:PMC9336147

[137]

Li X,Chen Z.Covalent-organic-framework-based Li-CO2 batteries.Adv Mater2019;31:e1905879

[138]

Zhang Y,Lu M.Single Metal site and versatile transfer channel merged into covalent organic frameworks facilitate high-performance Li-CO2 batteries.ACS Cent Sci2021;7:175-82 PMCID:PMC7845012

[139]

Lin R.Hydrogen-bonded organic frameworks: chemistry and functions.Chem2022;8:2114-35

[140]

Yin Q,Si DH.Metallization-prompted robust porphyrin-based hydrogen-bonded organic frameworks for photocatalytic CO2 reduction.Angew Chem Int Ed2022;61:e202115854

[141]

Lin ZJ,Liu TF.Multifunctional porous hydrogen-bonded organic frameworks: current status and future perspectives.ACS Cent Sci2022;8:1589-608 PMCID:PMC9801510

[142]

Karmakar A,Anothumakkool B.Hydrogen-bonded organic frameworks (HOFs): a new class of porous crystalline proton-conducting materials.Angew Chem Int Ed2016;55:10667-71

[143]

Yang Y,Lin RB.Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism.Nat Chem2021;13:933-9

[144]

Zhang Z,Xiang S.Exploring multifunctional hydrogen-bonded organic framework materials.ACC Chem Res2022;55:3752-66

[145]

Chen L,Zhang H.A flexible hydrogen-bonded organic framework constructed from a tetrabenzaldehyde with a carbazole N-H binding site for the highly selective recognition and separation of acetone.Angew Chem Int Ed2022;61:e202213959

[146]

Guo C,Sun W,Zhang Y.Hydrogen-bonded organic framework for high-performance lithium/sodium-iodine organic batteries.Angew Chem Int Ed2022;61:e202213276

[147]

Cheng Z,Yang Y.Hydrogen-bonded organic framework to upgrade cycling stability and rate capability of Li-CO2 batteries.Angew Chem Int Ed2023;135:e202311480

[148]

Hao X,Patil AM.Biomass-derived N-doped carbon for efficient electrocatalytic CO2 reduction to CO and Zn-CO2 batteries.ACS Appl Mater Interfaces2021;13:3738-47

[149]

Chen J,Li S.Porous metal current collectors for alkali metal batteries.Adv Sci2022;10:e2205695 PMCID:PMC9811491

[150]

Xiao Y,Hu C.High-performance Li-CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts.ACS Energy Lett2020;5:916-21

[151]

Yang H,Wu Y.Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density.Nano Energy2020;70:104454

[152]

Zhou J,Wang B,Lu J.Flexible metal-gas batteries: a potential option for next-generation power accessories for wearable electronics.Energy Environ Sci2020;13:1933-70

[153]

Chen L,Wang Y.Flexible, stretchable, water-/fire-proof fiber-shaped Li-CO2 batteries with high energy density.Adv Energy Mater2023;13:2202933

[154]

Hu T,Yao T.Freestanding molybdenum carbide nanowires electrode for high specific capacity and superior rate performance Li-CO2 batteries.Energy Storage Mater2024;72:103740

[155]

Chen M,Liang X,Li Y.Integrated carbon nanotube/MoO3 core/shell arrays as freestanding air cathodes for flexible Li-CO2 batteries.Energy Technol2021;9:2100547

[156]

Cheng Z,Chen J.Mo2N-ZrO2 heterostructure engineering in freestanding carbon nanofibers for upgrading cycling stability and energy efficiency of Li-CO2 batteries.Small2023;19:e2301685

[157]

Zhao W,Deng Q.Toward an understanding of bimetallic MXene solid-solution in binder-free electrocatalyst cathode for advanced Li-CO2 batteries.Adv Funct Mater2023;33:2210037

[158]

Liu L,Zhao H.Suppression of CO2 induced lithium anode corrosion by fluorinated functional group in quasi-solid polymer electrolyte enabling long-cycle and high-safety Li-CO2 batteries.Energy Storage Mater2023;57:260-8

[159]

Wang F,Xia X,Chen Q.Metal-CO2 electrochemistry: from CO2 recycling to energy storage.Adv Energy Mater2021;11:2100667

[160]

Zhang P,Shang N.Advances in polymer electrolytes for solid-state zinc-air batteries.Mater Chem Front2023;7:3994-4018

[161]

Xu S,Archer LA.The Li-CO2 battery: a novel method for CO2 capture and utilization.RSC Adv2013;3:6656

[162]

Zhu K,Choi J.Single-atom cadmium-N4 sites for rechargeable Li-CO2 batteries with high capacity and ultra-long lifetime.Adv Funct Mater2023;33:2213841.

[163]

Hu X,Zhao Y.Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes.Sci Adv2017;3:e1602396 PMCID:PMC5287700

[164]

Xu S,Wang H,Archer LA.A rechargeable Na-CO2/O2 battery enabled by stable nanoparticle hybrid electrolytes.J Mater Chem A2014;2:17723-9

[165]

Zhang W,Guo Z.High-performance K-CO2 batteries based on metal-free carbon electrocatalysts.Angew Chem Int Ed2020;59:3470-4

[166]

Sadat WI, Archer LA. The O2-assisted Al/CO2 electrochemical cell: a system for CO2 capture/conversion and electric power generation.Sci Adv2016;2:e1600968 PMCID:PMC4956394

PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

/