Printable high-performance iontronic power source based on osmotic effects

Yanhui Liu , Puguang Peng , Feiyao Yang , Zhong Lin Wang , Di Wei

Energy Materials ›› 2025, Vol. 5 ›› Issue (6) : 500059

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (6) :500059 DOI: 10.20517/energymater.2024.187
Article

Printable high-performance iontronic power source based on osmotic effects

Author information +
History +
PDF

Abstract

Iontronic power sources have attracted widespread attention in the field of energy harvesting and storage. However, conventional devices only generate an output voltage of ~1.0 V. Herein, we have developed units with an ultra-high voltage of ~2.0 V per unit based on osmotic effects and fine-tuning interfacial redox reactions. These systems are designed to harness the efficient ion dynamics of K+ within graphene oxide nanofluidic channels and tailor Faradaic processes at the interfaces. Printable, scalable, and optimized through fractal design, these miniaturized units are capable of directly powering commercial electronics, presenting a transformative paradigm for salinity gradient-based power generation. This approach offers a safe, ultra-thin, and portable solution for next-generation energy systems.

Keywords

Printable iontronic power source / osmotic effects / ion dynamics / graphene oxide / nanofluidic channels

Cite this article

Download citation ▾
Yanhui Liu, Puguang Peng, Feiyao Yang, Zhong Lin Wang, Di Wei. Printable high-performance iontronic power source based on osmotic effects. Energy Materials, 2025, 5(6): 500059 DOI:10.20517/energymater.2024.187

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peng P,Liu J,Wei D.Peng P, Qian H, Liu J, Wang Z, Wei D. Bioinspired ionic control for energy and information flow.Int J Smart Nano Mater2024;15:198-221

[2]

Graf M,Unuchek D.Light-enhanced blue energy generation using MoS2 nanopores.Joule2019;3:1549-64

[3]

Tsutsui M,Garoli D.Gate-all-around nanopore osmotic power generators.ACS Nano2024;18:15046-54

[4]

Liu P,Jiang L.Ion transport in nanofluidics under external fields.Chem Soc Rev2024;53:2972-3001

[5]

Liu P,Zhang L.Osmotic-enhanced-photoelectrochemical hydrogen production based on nanofluidics.CCS Chem2023;5:2012-22

[6]

Esfandiar A,Wang FC.Size effect in ion transport through angstrom-scale slits.Science2017;358:511-3

[7]

Zhang Z,Jiang L.Nanofluidics for osmotic energy conversion.Nat Rev Mater2021;6:622-39

[8]

Xin W,Huang X.High-performance silk-based hybrid membranes employed for osmotic energy conversion.Nat Commun2019;10:3876 PMCID:PMC6713777

[9]

Mei T,Xu G.Ionic transistors.ACS Nano2024;18:4624-50

[10]

Kim S,Lee HG.Neuromorphic van der Waals crystals for substantial energy generation.Nat Commun2021;12:47 PMCID:PMC7782783

[11]

Xin W,Qian Y.Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving.Nat Commun2022;13:1701 PMCID:PMC8971412

[12]

Tang J,Yang H.All-natural 2D nanofluidics as highly-efficient osmotic energy generators.Nat Commun2024;15:3649 PMCID:PMC11058229

[13]

Li C,Sui X,Gao L.Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion.Sci Adv2021;7:eabg2183 PMCID:PMC8133705

[14]

Shen J,Han Y.Artificial channels for confined mass transport at the sub-nanometre scale.Nat Rev Mater2021;6:294-312

[15]

Zhong J,Xie Q.Exploring anomalous fluid behavior at the nanoscale: direct visualization and quantification via nanofluidic devices.Acc Chem Res2020;53:347-57

[16]

Forse A,Merlet C.Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy.Nat Energy2017;2:2016216

[17]

Qian H,Wang Z.Bionic iontronics based on nano-confined structures.Nano Res2023;16:11718-30

[18]

Xue Y,Yang S.Atomic-scale ion transistor with ultrahigh diffusivity.Science2021;372:501-3

[19]

Wang M,Yu L.Anomalies of ionic/molecular transport in nano and sub-nano confinement.Nano Lett2020;20:6937-46

[20]

Daiguji H.Ion transport in nanofluidic channels.Chem Soc Rev2010;39:901-11

[21]

Robin P.Nanofluidics at the crossroads.J Chem Phys2023;158:160901

[22]

Zhan H,Cheng C,Liu JZ.Solvation-involved nanoionics: new opportunities from 2D nanomaterial laminar membranes.Adv Mater2020;32:e1904562

[23]

Zhu C,Niu B.Metallic two-dimensional MoS2 composites as high-performance osmotic energy conversion membranes.J Am Chem Soc2021;143:1932-40

[24]

Yang L,Li S.MOFs/MXene nano-hierarchical porous structures for efficient ion dynamics.Nano Energy2024;129:110076

[25]

Yang L,Qian H,Wang ZL.Osmotic power generation based on nanoconfined materials.MRS Energy Sustain2024;11:193-218

[26]

Qian H,Fan H.Horizontal transport in Ti3C2Tx MXene for highly efficient osmotic energy conversion from saline-alkali environments.Angew Chem Int Ed2024;63:e202414984

[27]

Yang F,Yan Z.Vertical iontronic energy storage based on osmotic effects and electrode redox reactions.Nat Energy2024;9:263-71

[28]

Peng P,Wang Z.Integratable paper-based iontronic power source for all-in-one disposable electronics.Adv Energy Mater2023;13:2302360

[29]

Wei D,Jiang Z.Flexible iontronics based on 2D nanofluidic material.Nat Commun2022;13:4965 PMCID:PMC9402920

[30]

Peng P,Li X,Wang Z.High-power iontronics enabled by nanoconfined ion dynamics.Cell Rep Phys Sci2024;5:101824

[31]

Wei D.Writable electrochemical energy source based on graphene oxide.Sci Rep2015;5:15173 PMCID:PMC4604454

[32]

Yang L,Liu X.A moisture-enabled fully printable power source inspired by electric eels.Proc Natl Acad Sci U S A2021;118 PMCID:PMC8072409

[33]

Abraham J,Williams CD.Tunable sieving of ions using graphene oxide membranes.Nat Nanotechnol2017;12:546-50

[34]

Nightingale ER.Phenomenological theory of ion solvation. Effective radii of hydrated ions.J Phys Chem1959;63:1381-7

[35]

Huang A,Kumar P.Low-temperature and fast-charging lithium metal batteries enabled by solvent-solvent interaction mediated electrolyte.Nano Lett2024:7499-507

[36]

Xiong M,Chakraborty R.Ion trapping and thermionic emission across sub-nm pores.Nano Lett2023;23:11719-26

[37]

Fan X,Li Y.Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation.Adv Mater2008;20:4490-3

[38]

Pei S.The reduction of graphene oxide.Carbon2012;50:3210-28

[39]

Xiong M,Leburton J.Ionic coulomb drag in nanofluidic semiconductor channels for energy harvest.Nano Energy2023;117:108860

[40]

Jiang Y,Wang T.A nanofluidic chemoelectrical generator with enhanced energy harvesting by ion-electron coulomb drag.Nat Commun2024;15:8582 PMCID:PMC11449912

PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

/