Insights into the role of electrolyte additives for stable Zn anodes

Shuo Yang , Yuwei Zhao , Chunyi Zhi

Energy Materials ›› 2025, Vol. 5 ›› Issue (2) : 500021

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (2) :500021 DOI: 10.20517/energymater.2024.169
Review

Insights into the role of electrolyte additives for stable Zn anodes

Author information +
History +
PDF

Abstract

Aqueous zinc-based batteries (ZIBs), characterized by their low cost, inherent safety, and environmental sustainability, represent a promising alternative for energy storage solutions in sustainable systems. Significant advancements have been made in developing high-performance cathode materials for aqueous ZIBs, which exhibit enhanced lifespan and energy density. However, challenges associated with zinc anodes, such as dendrite formation and side reactions, impede the practical application of ZIBs. This manuscript discusses the role of electrolyte additives in the Zn electrodeposition process and comprehensively describes strategies to enhance the anode stability through additive incorporation. It specifically focuses on the underlying mechanisms that regulate the solvation structure and the electrical double layer. Finally, the manuscript concludes with future perspectives on advancing Zn anode technology, aiming to provide guidelines for developing more robust Zn-based energy storage systems.

Keywords

Aqueous batteries / zinc anode / electrolyte additive / underlying mechanism / energy storage materials

Cite this article

Download citation ▾
Shuo Yang, Yuwei Zhao, Chunyi Zhi. Insights into the role of electrolyte additives for stable Zn anodes. Energy Materials, 2025, 5(2): 500021 DOI:10.20517/energymater.2024.169

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Achakulwisut P,Guivarch C,Brutschin E.Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions.Nat Commun2023;14:5425 PMCID:PMC10499994

[2]

Li M,Chen Z.30 years of lithium-ion batteries.Adv Mater2018;30:e1800561

[3]

Grey CP.Prospects for lithium-ion batteries and beyond-a 2030 vision.Nat Commun2020;11:6279 PMCID:PMC7722877

[4]

Degen F,Bendig D.Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells.Nat Energy2023;8:1284-95

[5]

Liang Y.Designing modern aqueous batteries.Nat Rev Mater2023;8:109-22

[6]

Ahn H,Lee M.Challenges and possibilities for aqueous battery systems.Commun Mater2023;4:367

[7]

Fu Q,Luo X.High-voltage aqueous Mg-ion batteries enabled by solvation structure reorganization.Adv Funct Mater2022;32:2110674

[8]

Li R,Chen F,Chan KC.High-power and ultrastable aqueous calcium-ion batteries enabled by small organic molecular crystal anodes.Adv Funct Mater2023;33:2214304

[9]

Liu YN,Gu ZY.Entropy-regulated cathode with low strain and constraint phase-change toward ultralong-life aqueous Al-ion batteries.Angew Chem Int Ed2024;63:e202316925

[10]

Zhang T,Guo S.Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review.Energy Environ Sci2020;13:4625-65

[11]

Zhou T.V2O5-based cathodes for aqueous zinc ion batteries: mechanisms, preparations, modifications, and electrochemistry.Nano Energy2024;127:109691

[12]

Zhang N,Wang J,Zhu Y.Understanding of the charge storage mechanism of MnO2-based aqueous zinc-ion batteries: reaction processes and regulation strategies.J Energy Chem2023;82:423-63

[13]

Li Y,Hu Q.Prussian blue analogs cathodes for aqueous zinc ion batteries.Mater Today Energy2022;29:101095

[14]

Li Z,Wang Y.Building better aqueous Zn-organic batteries.Energy Environ Sci2023;16:2398-431

[15]

Li C,Zhang J.Roadmap on the protective strategies of zinc anodes in aqueous electrolyte.Energy Storage Mater2022;44:104-35

[16]

Hao J,Zeng X,Mao J.Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries.Energy Environ Sci2020;13:3917-49

[17]

Cao J,Zhang X,Qin J.Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries.Energy Environ Sci2022;15:499-528

[18]

Yan C,Xiao Y.Toward critical electrode/electrolyte interfaces in rechargeable batteries.Adv Funct Mater2020;30:1909887

[19]

Jiang L,Xie X.Electric double layer design for Zn-based batteries.Energy Storage Mater2023;62:102932

[20]

Bockris JM,Müller K.On the structure of charged interfaces.Proc R Soc Lond A1963;274:55-79

[21]

Nakamura M,Hoshi N.Outer helmholtz plane of the electrical double layer formed at the solid electrode-liquid interface.Chemphyschem2011;12:1430-4

[22]

Read J.Characterization of the lithium/oxygen organic electrolyte battery.J Electrochem Soc2002;149:A1190

[23]

Ye Z,Lam Chee MO.Advances in Zn-ion batteries via regulating liquid electrolyte.Energy Storage Mater2020;32:290-305

[24]

Kim YP,Shin SK.Probing nanoparticles and nanoparticle-conjugated biomolecules using time-of-flight secondary ion mass spectrometry.Mass Spectrom Rev2015;34:237-47

[25]

Yao N,Fu ZH.Applying classical, Ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries.Chem Rev2022;122:10970-1021

[26]

Huang R,Wang W.Dual-anion chemistry synchronously regulating the solvation structure and electric double layer for durable Zn metal anodes.Energy Environ Sci2024;17:3179-90

[27]

Luo J,Zhou Y.Regulating the inner helmholtz plane with a high donor additive for efficient anode reversibility in aqueous Zn-ion batteries.Angew Chem Int Ed2023;135:e202302302

[28]

Chen F.Atomistic modelling approaches to understanding the interfaces of ionic liquid electrolytes for batteries and electrochemical devices.Curr Opin Electrochem2022;35:101086

[29]

Wang D,Zhao Y.Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation.Adv Energy Mater2022;12:2102707

[30]

Bazant MZ.Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.ACC Chem Res2013;46:1144-60

[31]

Zheng J.Controlling electrochemical growth of metallic zinc electrodes: Toward affordable rechargeable energy storage systems.Sci Adv2021;7:eabe0219 PMCID:PMC7787491

[32]

Choobar B, Hamed H, Safari M. Morphological peculiarities of the lithium electrode from the perspective of the Marcus-Hush-Chidsey model.J Energy Chem2023;80:452-7

[33]

Gileadi E.The mechanism of induced codeposition of Ni-W alloys.ECS Trans2007;2:337-49

[34]

Santos E,Schmickler W.Electron transfer at different electrode materials: metals, semiconductors, and graphene.Curr Opin Electrochem2020;19:106-12

[35]

Sato N. Electrochemistry at metal and semiconductor electrodes. Elsevier; 1998. Available from: https://www.sciencedirect.com/book/9780444828064/electrochemistry-at-metal-and-semiconductor-electrodes [Last accessed on 9 Jan 2024]

[36]

Grahame DC.Electrode processes and the electrical double layer.Annu Rev Phys Chem1955;6:337-58

[37]

Gileadi E.Can an electrode reaction occur without electron transfer across the metal/solution interface?.Chem Phys Lett2004;393:421-4

[38]

Bangle RE,Piechota EJ,Meyer GJ.Electron transfer reorganization energies in the electrode-electrolyte double layer.J Am Chem Soc2020;142:674-9

[39]

Zhang X,Jia X,Liu Y.Design strategies for aqueous zinc metal batteries with high zinc utilization: from metal anodes to anode-free structures.Nanomicro Lett2024;16:75 PMCID:PMC10766912

[40]

Doughty DH. Li ion battery abuse tolerance testing-an overview. 2006. Available from: https://www.osti.gov/servlets/purl/1725924 [Last accessed on 9 Jan 2024]

[41]

Dubarry M.Battery durability and reliability under electric utility grid operations: representative usage aging and calendar aging.J Energy Storage2018;18:185-95

[42]

Xiao J.How lithium dendrites form in liquid batteries.Science2019;366:426-7

[43]

Xu X,Kapitanova OO.Diffusion limited current density: a watershed in electrodeposition of lithium metal anode.Adv Energy Mater2022;12:2200244

[44]

Cogswell DA.Quantitative phase-field modeling of dendritic electrodeposition.Phys Rev E Stat Nonlin Soft Matter Phys2015;92:011301

[45]

Li Q,Mo F.Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries.EcoMat2020;2:e12035

[46]

Liu Z,Huang Y.Voltage issue of aqueous rechargeable metal-ion batteries.Chem Soc Rev2020;49:180-232

[47]

Zhao J,Yang W.“Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries.Nano Energy2019;57:625-34

[48]

Wang Y,Zhu J.Manipulating electric double layer adsorption for stable solid-electrolyte interphase in 2.3 Ah Zn-pouch cells.Angew Chem Int Ed2023;135:e202302583

[49]

Liang G,Yan B.Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry.Energy Environ Sci2022;15:1086-96

[50]

Yang Q,Hussain T.Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries.Angew Chem Int Ed2022;134:e202112304

[51]

Palacín MR.Why do batteries fail?.Science2016;351:1253292

[52]

Liu B,Li Y.Colossal capacity loss during calendar aging of Zn battery chemistries.ACS Energy Lett2023;8:3820-8

[53]

Li Q,Mo F.Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure.Adv Energy Mater2021;11:2003931

[54]

Belov D.Failure mechanism of Li-ion battery at overcharge conditions.J Solid State Electrochem2008;12:885-94

[55]

Ji W,Huang X.A redox-active organic cation for safer high energy density Li-ion batteries.J Mater Chem A2020;8:17156-62

[56]

Huang J,Cheng L.An organophosphine oxide redox shuttle additive that delivers long-term overcharge protection for 4 V lithium-ion batteries.J Mater Chem A2015;3:10710-4

[57]

Ji W,Zheng D.A redox-active organic cation for safer metallic lithium-based batteries.Energy Storage Mater2020;32:185-90 PMCID:PMC9012240

[58]

Odom SA,Poudel PP.A fast, inexpensive method for predicting overcharge performance in lithium-ion batteries.Energy Environ Sci2014;7:760-7

[59]

Ren D,Lu L,Ouyang M.Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions.Appl Energy2019;250:323-32

[60]

Weng W,Shkrob IA,Zhang Z.Redox shuttles with axisymmetric scaffold for overcharge protection of lithium-ion batteries.Adv Energy Mater2016;6:1600795

[61]

Wang F,Lu H.Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte.Nat Commun2023;14:4211 PMCID:PMC10349122

[62]

Wang F,Liu Z.A stimulus-responsive zinc-iodine battery with smart overcharge self-protection function.Adv Mater2020;32:e2000287

[63]

Li M,Wang X.Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials.Energy Environ Sci2021;14:3796-839

[64]

Yang F,Hao J.Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance.Adv Mater2022;34:e2206754

[65]

Cao L,Hu E.Solvation structure design for aqueous Zn metal batteries.J Am Chem Soc2020;142:21404-9

[66]

Li TC,Li XL.A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage.Adv Energy Mater2022;12:2103231

[67]

Zhang Q,Lu Y.Halogenated Zn2+ solvation structure for reversible Zn metal batteries.J Am Chem Soc2022;144:18435-43

[68]

Zhang Q,Lu Y.Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode.Angew Chem Int Ed2021;60:23357-64

[69]

Jiang L,Jiang Y.Unique solvation structure induced by anionic Cl in aqueous zinc ion batteries.Heliyon2024;10:e30592 PMCID:PMC11098851

[70]

Miao L,Di S.Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes.ACS Nano2022;16:9667-78

[71]

Cao L,Pollard T.Fluorinated interphase enables reversible aqueous zinc battery chemistries.Nat Nanotechnol2021;16:902-10

[72]

Li Y,Huang J,Xia Y.Constructing solid electrolyte interphase for aqueous zinc batteries.Angew Chem Int Ed2023;135:e202309957

[73]

Li D,Deng T,Wang C.Design of a solid electrolyte interphase for aqueous Zn batteries.Angew Chem Int Ed2021;60:13035-41

[74]

Wang G,Zhang XQ.Electrolyte additive for interfacial engineering of lithium and zinc metal anodes.Adv Energy Mater2024;2304557

[75]

Dong Y,Ma G.Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries.Chem Sci2021;12:5843-52 PMCID:PMC8179661

[76]

Xie D,Wang DH.ZnF2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries.Angew Chem Int Ed2023;62:e202216934

[77]

Chu Y,Wu S,Cui G.In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes.Energy Environ Sci2021;14:3609-20

[78]

Li Y,Liu X,Yuan D.Roles of electrolyte additive in Zn chemistry.Nano Res2023;16:9179-94

[79]

Yao R,Sui Y.A versatile cation additive enabled highly reversible zinc metal anode.Adv Energy Mater2022;12:2102780

[80]

Qiu M,Wang Y,Zhi C.Anion-trap engineering toward remarkable crystallographic reorientation and efficient cation migration of Zn ion batteries.Angew Chem Int Ed2022;61:e202210979

[81]

Wang H,Yin B.Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes.Angew Chem Int Ed2023;62:e202218872

[82]

Yang Y,Zhu Q.Optimal molecular configuration of electrolyte additives enabling stabilization of zinc anodes.Adv Funct Mater2024;34:2316371

[83]

Zhao Y,Tan LL.Manipulating the host-guest chemistry of cucurbituril to propel highly reversible zinc metal anodes.Small2024;20:e2308164

[84]

Han MC,Yu CY.Constructing dynamic anode/electrolyte interfaces coupled with regulated solvation structures for long-term and highly reversible zinc metal anodes.Angew Chem Int Ed2024;63:e202403695

[85]

Dong J,Peng H.Spontaneous molecule aggregation for nearly single-ion conducting sol electrolyte to advance aqueous zinc metal batteries: the case of tetraphenylporphyrin.Angew Chem Int Ed2024;63:e202401441

[86]

Wu Q,Qi Y.Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries.J Am Chem Soc2023;145:2473-84 PMCID:PMC9896563

[87]

Huang C,Hao Y.Selection criteria for electrical double layer structure regulators enabling stable Zn metal anodes.Energy Environ Sci2023;16:1721-31

[88]

Huang C,Zhao X.Rational design of sulfonamide-based additive enables stable solid electrolyte interphase for reversible Zn metal anode.Adv Funct Mater2023;33:2210197

[89]

Lin Y,Liang H,Yang G.Dendrite-free Zn anode enabled by anionic surfactant-induced horizontal growth for highly-stable aqueous Zn-ion pouch cells.Energy Environ Sci2023;16:687-97

[90]

Shen Z,Yu G.Electrocrystallization regulation enabled stacked hexagonal platelet growth toward highly reversible zinc anodes.Angew Chem Int Ed2023;62:e202218452

[91]

Ding F,Graff GL.Dendrite-free lithium deposition via self-healing electrostatic shield mechanism.J Am Chem Soc2013;135:4450-6

[92]

Ding Y,Wang T.A dynamic electrostatic shielding layer toward highly reversible Zn metal anode.Energy Storage Mater2023;62:102949

[93]

Guo X,Li J.Alleviation of dendrite formation on zinc anodes via electrolyte additives.ACS Energy Lett2021;6:395-403

[94]

Xu Y,Feng J.A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive.Energy Storage Mater2021;38:299-308

[95]

Hu Z,Zhao Y.A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries.Adv Mater2022;34:e2203104

[96]

Wang P,Xing Z.Mechanistic insights of Mg2+ -electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors.Adv Energy Mater2021;11:2101158

[97]

Jie Z,Zhong SL.The gut microbiome in atherosclerotic cardiovascular disease.Nat Commun2017;8:845

[98]

Kim M,Jeon J.Effect of a bromine complex agent on electrochemical performances of zinc electrodeposition and electrodissolution in Zinc-Bromide flow battery.J Power Sources2019;438:227020

[99]

Wang H,Hu X.Bifunctional dynamic adaptive interphase reconfiguration for zinc deposition modulation and side reaction suppression in aqueous zinc ion batteries.ACS Nano2023;17:11946-56

[100]

Yuan Y,Pérez-Osorio MA.Diagnosing the electrostatic shielding mechanism for dendrite suppression in aqueous zinc batteries.Adv Mater2024;36:e2307708

[101]

Li C,Qu G.Highly reversible Zn metal anode securing by functional electrolyte modulation.Adv Energy Mater2024;14:2400872

[102]

Zhang N,Liu J.Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities.Nat Commun2017;8:405 PMCID:PMC5581336

[103]

Ma L,Li H.Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode.Energy Environ Sci2018;11:2521-30

[104]

Liang J,Wan L.Gel polymer electrolytes based on compound cationic additives for environmentally adaptive flexible zinc-air batteries with a stable electrolyte/zinc anode interface.Energy Storage Mater2024;71:103677

[105]

Wang D,Liu H.In situ formation of nitrogen-rich solid electrolyte interphase and simultaneous regulating solvation structures for advanced Zn metal batteries.Angew Chem Int Ed2022;61:e202212839

[106]

Huang C,Hao Y.Self-healing SeO2 additives enable zinc metal reversibility in aqueous ZnSO4 electrolytes.Adv Funct Mater2022;32:2112091

[107]

Li TC,Luo M.Interfacial molecule engineering for reversible Zn electrochemistry.ACS Energy Lett2023;8:3258-68

[108]

Li J,Chen Y.Self-smoothing deposition behavior enabled by beneficial potential compensating for highly reversible Zn-metal anodes.Adv Funct Mater2023;33:2307201

[109]

Wan J,Liu Z.A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries.ACS Nano2023;17:1610-21

[110]

Bai X,Yang K.Zn ionophores to suppress hydrogen evolution and promote uniform Zn deposition in aqueous Zn batteries.Adv Funct Mater2023;33:2307595

[111]

Wang Y,Pang WK.Solvent control of water O-H bonds for highly reversible zinc ion batteries.Nat Commun2023;14:2720 PMCID:PMC10175258

[112]

Dong Y,Wang Z.Cell-nucleus structured electrolyte for low-temperature aqueous zinc batteries.J Energy Chem2023;83:324-32

PDF

230

Accesses

0

Citation

Detail

Sections
Recommended

/