Zwitterionic gemini additive as interface engineers for long-life aqueous Zn/TEMPO flow batteries with enhanced areal capacity

Feiyang Hu , Zhiwen Cui , Zhen Dong , Liyuan Jiang , Nwaji Njemuwa Njoku , Wenzhang Dong , Hao Fan , Mahalingam Ravivarma , Jianbao Wu , Duanyang Kong , Jiangxuan Song

Energy Materials ›› 2025, Vol. 5 ›› Issue (7) : 500078

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (7) :500078 DOI: 10.20517/energymater.2024.161
Article

Zwitterionic gemini additive as interface engineers for long-life aqueous Zn/TEMPO flow batteries with enhanced areal capacity

Author information +
History +
PDF

Abstract

Aqueous Zn-based flow batteries often face issues such as poor reversibility and short lifespan due to irregular Zn deposition and detrimental side reactions. To address these challenges, we developed a zwitterionic gemini additive, N,N′-bis(3-propanesulfonic acid)-3,3′-bipyridinium (SPr-Bpy), to enhance Zn plating/stripping behavior and optimize the Zn2+ solvation structure. The dual sulfonate groups influence the Zn2+ solvation shell and anchor SPr-Bpy to the Zn surface through multi-site interactions. Additionally, the bipyridinium structure forms an electrostatic shielding layer, suppressing excessive Zn2+ accumulation, promoting uniform Zn deposition, and thus mitigating dendrite formation and hydrogen evolution. Consequently, the Zn||Zn symmetric cells exhibit an impressive lifespan of 250 h, while the Zn||Cu asymmetric cells achieve a high average Coulombic efficiency of 99.8% over 450 cycles. Moreover, SPr-Bpy significantly improves Zn/TEMPO flow battery performance, achieving a high areal capacity of 24.4 mAh cm-2 with an exceptional capacity retention of 99.992%/cycle over 500 cycles.

Keywords

Zn/TEMPO flow batteries / interface engineering / zwitterionic gemini additive / electrostatic interaction / areal capacity

Cite this article

Download citation ▾
Feiyang Hu, Zhiwen Cui, Zhen Dong, Liyuan Jiang, Nwaji Njemuwa Njoku, Wenzhang Dong, Hao Fan, Mahalingam Ravivarma, Jianbao Wu, Duanyang Kong, Jiangxuan Song. Zwitterionic gemini additive as interface engineers for long-life aqueous Zn/TEMPO flow batteries with enhanced areal capacity. Energy Materials, 2025, 5(7): 500078 DOI:10.20517/energymater.2024.161

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Moutet J,Kaur R,Gianetti TL.Designing the next generation of symmetrical organic redox flow batteries using helical carbocations.Energy Mater2024;4:400024

[2]

Zhang J,Yang F.Tailoring porous structure in non-ionic polymer membranes using multiple templates for low-cost iron-lead single-flow batteries.Energy Mater2024;4:400042

[3]

Fan H,Zhang X.Spatial structure regulation towards armor-clad five-membered pyrroline nitroxides catholyte for long-life aqueous organic redox flow batteries.eScience2024;4:100202

[4]

Zuo LL,Li SC.Highly thermal conductive separator with in-built phosphorus stabilizer for superior Ni-rich cathode based lithium metal batteries.Adv Energy Mater2021;11:2003285

[5]

Li H,Hu B,Chang G.Spatial structure regulation: a rod-shaped viologen enables long lifetime in aqueous redox flow batteries.Angew Chem Int Ed2021;60:26971-7

[6]

Fan H,Ravivarma M.Mitigating ring-opening to develop stable TEMPO catholytes for pH-neutral all-organic redox flow batteries.Adv Funct Mater2022;32:2203032

[7]

Duan Y,Yang K.Ultrahigh energy and power density in Ni-Zn aqueous battery via superoxide-activated three-electron transfer.Nanomicro Lett2024;17:79 PMCID:PMC11607291

[8]

Li Z.Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies.Adv Mater2020;32:e2002132

[9]

Zhao CX,Li BQ.Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc-air batteries.Adv Funct Mater2020;30:2003619

[10]

Huang Y,Xiong L.Electrodes with metal-based electrocatalysts for redox flow batteries in a wide pH range.Prog Energy2023;5:022002

[11]

Amini K,Pritzker MD.Metal and metal oxide electrocatalysts for redox flow batteries.Adv Funct Mater2020;30:1910564

[12]

Li Z,Zou Q,Lu YC.A high-energy and low-cost polysulfide/iodide redox flow battery.Nano Energy2016;30:283-92

[13]

Ma D,Wu W.Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries.Nat Commun2019;10:3367 PMCID:PMC6662769

[14]

Xia Y,Yufit V.A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture.Nat Commun2022;13:2388 PMCID:PMC9061742

[15]

Ai F,Lai NC,Liang Z.Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures.Nat Energy2022;7:417-26

[16]

Amini K,George TY.An extremely stable, highly soluble monosubstituted anthraquinone for aqueous redox flow batteries.Adv Funct Mater2023;33:2211338

[17]

Carrington ME,Jónsson E.Associative pyridinium electrolytes for air-tolerant redox flow batteries.Nature2023;623:949-55 PMCID:PMC10686829

[18]

Feng R,Zhang X.Proton-regulated alcohol oxidation for high-capacity ketone-based flow battery anolyte.Joule2023;7:1609-22

[19]

Hu M,Luo J.Desymmetrization of viologen anolytes empowering energy dense, ultra stable flow batteries toward long-duration energy storage.Adv Energy Mater2022;12:2202085

[20]

Jing Y,Goulet MA.In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries.Nat Chem2022;14:1103-9

[21]

Na M,Choi RH,Byon HR.Zn glutarate protective layers in situ form on Zn anodes for Zn redox flow batteries.Energy Storage Mater2023;57:195-204

[22]

Park M,Fell EM.A high voltage aqueous zinc-organic hybrid flow battery.Adv Energy Mater2019;9:1900694

[23]

Xiang W,Ding M.Alkaline Zn-Mn aqueous flow batteries with ultrahigh voltage and energy density.Energy Storage Mater2023;61:102894

[24]

Yuan Z.Perspective of alkaline zinc-based flow batteries.Sci China Chem2024;67:260-75

[25]

Zhu Y,Cui X.Engineering hosts for Zn anodes in aqueous Zn-ion batteries.Energy Environ Sci2024;17:369-85

[26]

Dong N,Pan H.Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries.Chem Sci2022;13:8243-52 PMCID:PMC9297528

[27]

Yu H,Ni X.Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries.Energy Environ Sci2023;16:2684-95

[28]

Zhou S,Chen Y.Zinc-ion anchor induced highly reversible Zn anodes for high performance Zn-ion batteries.Angew Chem Int Ed2024;63:e202403050

[29]

Xu D,Li H.Chelating additive regulating Zn-ion solvation chemistry for highly efficient aqueous zinc-metal battery.Angew Chem Int Ed2024;63:e202402833

[30]

Qin R,Yao L.Progress in interface structure and modification of zinc anode for aqueous batteries.Nano Energy2022;98:107333

[31]

Yuan L,Kao CC.Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries.Energy Environ Sci2021;14:5669-89

[32]

Zhao Q,Archer LA.Stabilizing metal battery anodes through the design of solid electrolyte interphases.Joule2021;5:1119-42

[33]

Zhao Z,Peng C.Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries.Nat Commun2021;12:6606

[34]

Dai Y,Zhang C.Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries.Nat Catal2024;7:776-84

[35]

Han D,Lu H.A self-regulated interface toward highly reversible aqueous zinc batteries.Adv Energy Mater2022;12:2102982

[36]

Bayaguud A,Fu Y.Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries.ACS Energy Lett2020;5:3012-20

[37]

Zhang Q,Lu Y.Modulating electrolyte structure for ultralow temperature aqueous zinc batteries.Nat Commun2020;11:4463 PMCID:PMC7479594

[38]

Geng L,Wang X.Organic-solvent-free primary solvation shell for low-temperature aqueous zinc batteries.Chem2025;11:102302

[39]

Gamsey S,Olmstead MM.Boronic acid-based bipyridinium salts as tunable receptors for monosaccharides and α-hydroxycarboxylates.J Am Chem Soc2007;129:1278-86

[40]

Xie F,Wang X.Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries.Adv Energy Mater2021;11:2003419

[41]

Kumari N,Kumar S.Nanoarchitectonics of sulfonated biochar from pine needles as catalyst for conversion of biomass derived chemicals to value added products.Catal Commun2022;168:106467

[42]

Cao F,Ji X.Enhanced visible photocatalytic activity of tree-like ZnO/CuO nanostructure on Cu foam.Appl Surf Sci2019;471:417-24

[43]

Zhang J,Xu P.An all-aqueous redox flow battery with unprecedented energy density.Energy Environ Sci2018;11:2010-5

[44]

Weng GM,Cong G,Lu YC.Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries.Energy Environ Sci2017;10:735-41

[45]

Xie C,Deng C,Zhang H.A highly reversible neutral zinc/manganese battery for stationary energy storage.Energy Environ Sci2020;13:135-43

[46]

Jin S,Gao X.Designing interphases for practical aqueous zinc flow batteries with high power density and high areal capacity.Sci Adv2022;8:eabq4456 PMCID:PMC9519044

[47]

Luo J,Hu M,Liu TL.An energy-dense, powerful, robust bipolar zinc-ferrocene redox-flow battery.Angew Chem Int Ed2022;61:e202204030

[48]

Yang M,Xiang W.High performance and long cycle life neutral zinc-iron flow batteries enabled by zinc-bromide complexation.Energy Storage Mater2022;44:433-40

[49]

Ling R,Peng K.Dual-function electrolyte additive design for long life alkaline zinc flow batteries.Adv Mater2024;36:e2404834

PDF

71

Accesses

0

Citation

Detail

Sections
Recommended

/