Properties and modulation strategies of ZnIn2S4 for photoelectrochemical water splitting: opportunities and prospects

Shuhua Wang , Huilin Hou , Sheng Cao , Lin Wang , Weiyou Yang

Energy Materials ›› 2025, Vol. 5 ›› Issue (7) : 500080

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (7) :500080 DOI: 10.20517/energymater.2024.158
Review

Properties and modulation strategies of ZnIn2S4 for photoelectrochemical water splitting: opportunities and prospects

Author information +
History +
PDF

Abstract

The global energy crisis has driven significant research into renewable energy sources, and photoelectrochemical (PEC) water splitting stands out as one of the most promising solutions for hydrogen production. Among the various materials developed for PEC water splitting, ternary metal sulfides, particularly ZnIn2S4, have garnered considerable attention due to their unique combination of electronic, optical, and chemical properties. This paper presents a comprehensive analysis of the structure and properties of ZnIn2S4, explores modification strategies for ZnIn2S4-based photoanodes, and discusses their application in PEC water splitting. Furthermore, we address the challenges and limitations of ZnIn2S4-based photoanodes and highlight prospects for their future development.

Keywords

ZnIn2S4 / photoanode / photoelectrochemical water splitting / hydrogen production

Cite this article

Download citation ▾
Shuhua Wang, Huilin Hou, Sheng Cao, Lin Wang, Weiyou Yang. Properties and modulation strategies of ZnIn2S4 for photoelectrochemical water splitting: opportunities and prospects. Energy Materials, 2025, 5(7): 500080 DOI:10.20517/energymater.2024.158

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Roda D,Łapiński M.The new method of ZnIn2S4 synthesis on the titania nanotubes substrate with enhanced stability and photoelectrochemical performance.Sci Rep2023;13:21263 PMCID:PMC10692104

[2]

Zhang G,Chen D.A mini-review on ZnIn2S4-based photocatalysts for energy and environmental application.Green Energy Environ2022;7:176-204

[3]

Song Y,Dong X.A review and recent developments in full-spectrum photocatalysis using ZnIn2S4-based photocatalysts.Energy Tech2021;9:2100033

[4]

Feng C,Huang KW,Zhang H.Surface modification of 2D photocatalysts for solar energy conversion.Adv Mater2022;34:2200180

[5]

Yang L,Xiang Q.Advances and challenges in the modification of photoelectrode materials for photoelectrocatalytic water splitting.Mater Horiz2024;11:1638-57

[6]

Gong Y,Shao B,Lu T.Stable metal-organic frameworks for PEC water splitting.FlatChem2021;27:100240

[7]

Xu XT,Zhang X,Zou JJ.Rational design and construction of cocatalysts for semiconductor-based photo-electrochemical oxygen evolution: a comprehensive review.Adv Sci2019;6:1801505

[8]

Sun J,Zhang X.Using VO2 as a hole storage layer to improve PEC water splitting performance of BiVO4 photoanode.Int J Hydrogen Energy2024;69:95-102

[9]

Dong G,Bi Y.Advanced oxygen evolution reaction catalysts for solar-driven photoelectrochemical water splitting.J Mater Chem A2023;11:3888-903

[10]

Song Y,Cheng H.Metal-organic framework glass catalysts from melting glass-forming cobalt-based zeolitic imidazolate framework for boosting photoelectrochemical water oxidation.Angew Chem Int Ed2023;62:e202306420

[11]

Singh I,Mahajan A.Interfacial engineering of a TiO2 photoanode via graphene nanoribbons for efficient quantum-dot-sensitized solar cells and photoelectrochemical water splitting.Energy Fuels2023;37:15054-66

[12]

Feng Y,Li J.Fabrication of WO3 photoanode on crystalline Si solar cell for water splitting.J Mater Sci Mater Electron2020;31:14137-44

[13]

Krysiak OA,Conzuelo F.Importance of catalyst-photoabsorber interface design configuration on the performance of Mo-doped BiVO4 water splitting photoanodes.J Solid State Electrochem2021;25:173-85

[14]

Choi MJ,Choi KS.Controlled band offsets in ultrathin hematite for enhancing the photoelectrochemical water splitting performance of heterostructured photoanodes.ACS Appl Mater Interfaces2022;14:7788-95

[15]

Zheng X,Liu Y.ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting.Coord Chem Rev2023;475:214898

[16]

Yan Y,Cheng X.Research progress of ZnIn2S4-based catalysts for photocatalytic overall water splitting.Catalysts2023;13:967

[17]

Long C,Huang J.Latest progress on photocatalytic H2 production by water splitting and H2 production coupled with selective oxidation of organics over ZnIn2S4-based photocatalysts.Energy Fuels2023;37:136-58

[18]

Ren Y,Zeng D.ZnIn2S4-based nanostructures in artificial photosynthesis: insights into photocatalytic reduction toward sustainable energy production.Small Struct2022;3:2200017

[19]

Khosya M,Faraz M.Enhanced photoelectrochemical water splitting and photocatalytic degradation performance of visible light active ZnIn2S4/PANI nanocomposite.Int J Hydrogen Energy2023;48:2518-31

[20]

Mahadik MA,Cho M.Metal oxide top layer as an interfacial promoter on a ZnIn2S4/TiO2 heterostructure photoanode for enhanced photoelectrochemical performance.Appl Catal B Environ2016;184:337-46

[21]

Pan F,Li Z.Substitutional Cd dopant as photohole transfer mediator boosting photoelectrochemical solar energy conversion of 2D Cd-ZnIn2S4 photoanode.Small2024;20:2304846

[22]

Lin Y,Xv R.TiO2 nanoparticles modified with ZnIn2S4 nanosheets and Co-Pi groups: type II heterojunction and cocatalysts coexisted photoanode for efficient photoelectrochemical water splitting.Int J Hydrogen Energy2022;47:33361-73

[23]

Chen J,Cai X,Gu X.Sulfur vacancy-rich ZnIn2S4 nanosheet arrays for visible-light-driven water splitting.Mater Sci Semicond Process2022;143:106547

[24]

Song Y,Yang Y.Heterojunction engineering of multinary metal sulfide-based photocatalysts for efficient photocatalytic hydrogen evolution.Adv Mater2024;36:2305835

[25]

Bao Z,Zhang Z.Visible-light-responsive S-vacancy ZnIn2S4/N-doped TiO2 nanoarray heterojunctions for high-performance photoelectrochemical water splitting.J Mater Chem A2024;12:15902-13

[26]

Wang J,Zhou R.A review: synthesis, modification and photocatalytic applications of ZnIn2S4.J Mater Sci Technol2021;78:1-19

[27]

Lee J,Lee T,Lee KH.Revisiting polytypism in hexagonal ternary sulfide ZnIn2S4 for photocatalytic hydrogen production within the Z-scheme.Chem Mater2019;31:9148-55

[28]

Yang W,Fang T.Layered crystalline ZnIn2S4 nanosheets: CVD synthesis and photo-electrochemical properties.Nanoscale2016;8:18197-203

[29]

Wang J,Zhou W.Cubic quantum dot/hexagonal microsphere ZnIn2S4 heterophase junctions for exceptional visible-light-driven photocatalytic H2 evolution.J Mater Chem A2017;5:8451-60

[30]

Luan Q,Li R.Boosting photocatalytic hydrogen evolution: orbital redistribution of ultrathin ZnIn2S4 nanosheets via atomic defects.Appl Catal B Environ2022;305:121007

[31]

Chong W,Kong XY,Putri LK.Non-metal doping induced dual p-n charge properties in a single ZnIn2S4 crystal structure provoking charge transfer behaviors and boosting photocatalytic hydrogen generation.Appl Catal B Environ2023;325:122372

[32]

Zhang W,Xing Y.Sandwich-like P-doped h-BN/ZnIn2S4 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 and H2O2 evolution.Chem Eng J2022;442:136151

[33]

Dai M,Zhang P,Wang S.ZnWO4-ZnIn2S4 S-scheme heterojunction for enhanced photocatalytic H2 evolution.J Materi Sci Technol2022;122:231-42

[34]

Hao C,Shi W,Guo F.Facile solvothermal synthesis of a Z-scheme 0D/3D CeO2/ZnIn2S4 heterojunction with enhanced photocatalytic performance under visible light irradiation.Chem Eng J2021;409:128168

[35]

Alshgari RA,Shah JH,Abid AG.Nanosphere-like ZnIn2S4 intercalated g-C3N4 for improved green oxygen production.J Korean Ceram Soc2024;61:1013-26

[36]

Li H,Zhao L.Synthesis of TiO2@ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution.Rare Met2019;38:420-7

[37]

Ye L.ZnIn2S4: a photocatalyst for the selective aerobic oxidation of amines to imines under visible light.ChemCatChem2014;6:2540-3

[38]

Gou X,Shi Y.Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route.J Am Chem Soc2006;128:7222-9

[39]

Geng H,Li K,Gu X.Epitaxial In2S3/ZnIn2S4 heterojunction nanosheet arrays on FTO substrates for photoelectrochemical water splitting.Appl Surf Sci2021;563:150289

[40]

Kale BB,Baeg JO.Template free architecture of hierarchical nanostructured ZnIn2S4 rose-like flowers for solar hydrogen production.J Nanosci Nanotechnol2017;17:1447-454

[41]

Zhou MJ.Synthesis and photocatalytic properties of flower-like ZnIn2S4 microspheres by a solvothermal method.Adv Mater Res2013;881-3:1101-4

[42]

Huang Y,Xu W.Converting Undesirable defects into activity sites enhances the photoelectrochemical performance of the ZnIn2S4 photoanode.Adv Energy Mater2024;14:2304376

[43]

Cheng K.Preparation of Zn-In-S film electrodes using chemical bath deposition for photoelectrochemical applications.Sol Energy Mater Sol Cells2010;94:1137-45

[44]

Sun Y,Chen L.Enhancement of interfacial charge transportation through construction of 2D-2D p-n heterojunctions in hierarchical 3D CNFs/MoS2/ZnIn2S 4 composites to enable high-efficiency photocatalytic hydrogen evolution.Solar RRL2021;5:2000722

[45]

Gao Y,Zhang D,Lu J.Microwave-assisted fabrication of CQDs/ZnIn2S4 nanocomposites for synergistic photocatalytic removal of Cr(VI) and rhodamine B.Inorg Nano-Metal Chem2021;51:451-7

[46]

Chen Z,Xiao G,Xu Y.Microwave-assisted hydrothermal synthesis of marigold-like ZnIn2S4 microspheres and their visible light photocatalytic activity.J Solid State Chem2012;186:247-54

[47]

Mahadik MA,Chae W,Cho M.Microwave-assisted rapid synthesis of Cu2S:ZnIn2S4 marigold-like nanoflower heterojunctions and enhanced visible light photocatalytic hydrogen production via Pt sensitization.J Ind Eng Chem2022;108:203-14

[48]

Chang YC,Pan KY.Microwave-assisted synthesis of SnO2@ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution.Materials2024;17:2367 PMCID:PMC11123309

[49]

Mishra M,Wang PH,Lee TR.Tuning the crystallinity and coverage of SiO2-ZnIn2S4 core-shell nanoparticles for efficient hydrogen generation.ACS Appl Mater Interfaces2021;13:4043-50

[50]

Sun M,Zeng Q.Facile synthesis of hierarchical ZnIn2S4/CdIn2S4 microspheres with enhanced visible light driven photocatalytic activity.Appl Surf Sci2017;407:328-36

[51]

Bedala KK,Soleimani M.Facile synthesis of ZnIn2S4/Cu2O hierarchical heterostructures for enhanced selectivity and sensitivity of NH3 gas at room temperature.Appl Surf Sci2023;640:158315

[52]

Xu Z,Shi Y.Carbon dots as solid-state electron mediator and electron acceptor in S-scheme heterojunction for boosted photocatalytic hydrogen evolution.Appl Surf Sci2022;595:153482

[53]

Chen W,Zhu J,Chen Z.Highly efficient visible-light-driven photocatalytic hydrogen evolution by all-solid-state Z-scheme CdS/QDs/ZnIn2S4 architectures with MoS2 quantum dots as solid-state electron mediator.Appl Surf Sci2020;504:144406

[54]

Yang R,Fan Y.ZnIn2S4-based photocatalysts for energy and environmental applications.Small Methods2021;5:2100887

[55]

Fang W,Zhang Y.Alkaline induced indium gradient distribution in ZnmIn2S3+m/In(OH)3 heterojunction for improved photocatalytic H2 generation.Appl Surf Sci2020;530:147241

[56]

Pan Y,Jiang L.Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide.Chem Eng J2018;354:407-31

[57]

Wang S,Zhang SL,Lou XWD.Supporting ultrathin ZnIn2S4 nanosheets on Co/N-doped graphitic carbon nanocages for efficient photocatalytic H2 generation.Adv Mater2019;31:1903404

[58]

Huang L,Huang X.Ultrathin 2D/2D ZnIn2S4/MoS2 hybrids for boosted photocatalytic hydrogen evolution under visible light.J Alloys Compd2019;798:553-9

[59]

Chen Y,Chen D.Exploring the different photocatalytic performance for dye degradations over hexagonal ZnIn2S4 microspheres and cubic ZnIn2S4 nanoparticles.ACS Appl Mater Interfaces2012;4:2273-9

[60]

Uddin A,Guo Z,Chen H.Hydrothermal synthesis of 3D/2D heterojunctions of ZnIn2S4/oxygen doped g-C3N4 nanosheet for visible light driven photocatalysis of 2,4-dichlorophenoxyacetic acid degradation.J Alloys Compd2020;845:156206

[61]

Xu L,Li Z.Photocatalytic splitting of thiols to produce disulfides and hydrogen over PtS/ZnIn2S4 nanocomposites under visible light.Appl Catal B Environ2018;234:50-5

[62]

Li M,Yang X,Yang MQ.S-scheme homojunction of 0D cubic/2D hexagonal ZnIn2S4 for efficient photocatalytic reduction of nitroarenes.J Colloid Interface Sci2024;674:547-59

[63]

Wang S,Lou XWD.Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction.J Am Chem Soc2018;140:5037-40

[64]

Zuo G,Teo WL,Zhao Y.Direct Z-scheme TiO2-ZnIn2S4 nanoflowers for cocatalyst-free photocatalytic water splitting.Appl Catal B Environ2021;291:120126

[65]

Chen Y,He B,Wu Q.Facile design and fabrication of RP/ZnIn2S4 composite photocatalysts with efficient removal of antibiotics under visible-light irradiation.J Alloys Compd2023;968:171972

[66]

Tu B,Wang F,Li J.New insights into the enhancement of TiO2/ZnIn2S4 heterojunction via cerium doping.Appl Surf Sci2023;629:157451

[67]

Zhou F,Wu J.Utilizing Er-doped ZnIn2S4 for efficient photocatalytic CO2 conversion.Appl Catal B Environ2024;341:123347

[68]

Khosya M,Khare N.Enhanced photoelectrochemical water splitting in ternary layered chalcogenide ZnIn2S4 coupled with MWCNT.Nano Trends2023;4:100018

[69]

Zhou M,Song Q,Chen B.Hybrid 0D/2D edamame shaped ZnIn2S4 photoanode modified by Co-Pi and Pt for charge management towards efficient photoelectrochemical water splitting.Appl Catal B Environ2019;244:188-96

[70]

Zhang S,Xiao H.Fast interfacial carrier dynamics modulated by bidirectional charge transport channels in ZnIn2S4-based composite photoanodes probed by scanning photoelectrochemical microscopy.Angew Chem Int Ed2024;63:e202315763

[71]

Li J,Guo Z.Piezoelectric effect promoted photoelectrochemical water splitting ability of ZnIn2S4 photoanode with highly exposed active (110) facets.ChemCatChem2024;16:e202301318

[72]

Li S,Tian W.Engineering interfacial band bending over ZnIn2S4/SnS2 by interface chemical bond for efficient solar-driven photoelectrochemical water splitting.Adv Energy Mater2022;12:2200629

[73]

Lv G,Wu X.Realizing highly efficient photoelectrochemical performance for vertically aligned 2D ZnIn2S4 array photoanode via controlled facet and phase modulation.Appl Surf Sci2023;609:155335

[74]

Khosya M,Faraz M.Visible light active ZnIn2S4/g-C3N4 heterostructure nanocomposite photoelectrode for efficient photoelectrochemical water splitting activity.Adv Powder Technol2023;34:104051

[75]

Hao Z,Zhang L.Sufficient energy band utilization profited from spatially discrete heterogeneous interfaces to induce efficient photoelectrochemical water splitting for ZnIn2S4 photoanode.Surf Interfaces2024;51:104667

[76]

Wang L,Lai L.Immobilization of prussian blue nanoparticles onto Au-modified ZnIn2S4 photoanode for efficient photoelectrochemical water splitting.Eur J Inorg Chem2024;27:e202400007

[77]

Fan B,Liu Q,Fang X.One-pot hydrothermal synthesis of Ni-doped ZnIn2S4 nanostructured film photoelectrodes with enhanced photoelectrochemical performance.Appl Surf Sci2016;370:252-9

[78]

Qian H,Guo Z,Ma J.Hexagonal phase/cubic phase homogeneous ZnIn2S4 n-n junction photoanode for efficient photoelectrochemical water splitting.J Alloys Compd2020;830:154639

[79]

Qian H,Ya J,Ma J.Construction homojunction and co-catalyst in ZnIn2S4 photoelectrode by Co ion doping for efficient photoelectrochemical water splitting.J Alloys Compd2021;867:159028

[80]

Wu Y,Lv G.Construction of p-n junctions in single-unit-cell ZnIn2S4 nanosheet arrays toward promoted photoelectrochemical performance.J Catal2021;401:262-70

[81]

Xu W,Meng L,Li L.Incorporation of sulfate anions and sulfur vacancies in ZnIn2S4 photoanode for enhanced photoelectrochemical water splitting.Adv Energy Mater2021;11:2101181

[82]

Wu K,Wu P.Highly efficient hydrogen production performance of g-C3N4 quantum dot-sensitized WO3/Ni-ZnIn2S4 nanosheets.Appl Phys A2022;128:6055

[83]

Fan H,Liu K.One-step MOF-templated strategy to fabrication of Ce-doped ZnIn2S4 tetrakaidecahedron hollow nanocages as an efficient photocatalyst for hydrogen evolution.Adv Sci2022;9:2104579

[84]

Zhou D,Wang X.Ni, In co-doped ZnIn2S4 for efficient hydrogen evolution: modulating charge flow and balancing H adsorption/desorption.Appl Catal B Environ2022;310:121337

[85]

Dong W,Ma Y.N-doped C-coated MoO2/ZnIn2S4 heterojunction for efficient photocatalytic hydrogen production.Rare Met2023;42:1195-204

[86]

Shi X,Wang X.Facile construction TiO2/ZnIn2S4/Zn0.4Ca0.6In2S4 ternary hetero-structure photo-anode with enhanced photo-electrochemical water-splitting performance.Surf Interfaces2021;26:101323

[87]

Hu Z,Han C.Plasmon-induced hole-depletion layer on p-n heterojunction for highly efficient photoelectrochemical water splitting.J Colloid Interface Sci2022;628:946-54

[88]

Zhao Y,Shu Y.Classification and catalytic mechanisms of heterojunction photocatalysts and the application of titanium dioxide (TiO2)-based heterojunctions in environmental remediation.J Environ Chem Eng2022;10:108077

[89]

Yue Y.Oxygen vacancy-suppression strengthened the internal electric field in ZnIn2S4/BiVO4 S-scheme heterojunction to boost photocatalytic removal of aqueous pollutants.J Environ Chem Eng2024;12:113473

[90]

Wang S,Pu X,Zhang D.Photothermal-enhanced S-scheme heterojunction of hollow core-shell FeNi2S4@ZnIn2S4 toward photocatalytic hydrogen evolution.Small2024;20:2311504

[91]

Liu D,Chen D.Twin S-scheme g-C3N4/CuFe2O4/ZnIn2S4 heterojunction with a self-supporting three-phase system for photocatalytic CO2 reduction: mechanism insight and DFT calculations.ACS Catal2024;14:5326-43

[92]

Wang H,Tang Q.Ultrathin 2D/2D ZnIn2S4/La2Ti2O7 nanosheets with a Z-scheme heterojunction for enhanced photocatalytic hydrogen evolution.Dalton Trans2024;53:13491-502

[93]

Xu W,Meng L,Li L.Interfacial chemical bond-modulated Z-scheme charge transfer for efficient photoelectrochemical water splitting.Adv Energy Mater2021;11:2003500

[94]

Li J,Li J,Zhao L.1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution.Chin J Catal2022;43:339-49

[95]

Yue Y.Boosting interfacial charge separation for ZnIn2S4 homojunction by lattice matching effect to enhance photocatalytic performance.J Alloys Compd2023;966:171659

[96]

Wang H,You Z,Liu Y.An innovative Zn3In2S6/ZnIn2S4 homojunction photocatalyst with enhanced interfacial charge transfer for the highly efficient degradation of tetracycline under visible radiation.J Environ Manage2024;365:121605

[97]

Jiang Z,Cai X.Enhanced performance of FeOOH/ZnIn2S4/Au nanosheet arrays for visible light water splitting.J Mater Sci Mater Electron2022;33:6070-81

[98]

Li C,Ding G.Interior and surface synergistic modifications modulate the SnNb2O6/Ni-doped ZnIn2S4 S-scheme heterojunction for efficient photocatalytic H2 evolution.Inorg Chem2022;61:4681-9

[99]

Wang G,Xia C,Dong B.Sulfur poisoning-resistant TiO2/Cu-doped ZnIn2S4 photoanode for achieving efficient sulfur oxidation.Colloids Surf A Physicochem Eng Aspects2024;689:133656

[100]

Peng Y,Xu S.Surface modulation of MoS2/O-ZnIn2S4 to boost photocatalytic H2 evolution.J Energy Chem2022;75:276-84

[101]

Zhao H,Cai M.Synergistic selenium doping and colloidal quantum dots decoration over ZnIn2S4 enabling high-efficiency photoelectrochemical hydrogen peroxide production.Chem Eng J2024;491:151925

[102]

Jeong YJ,Nam S.Rapid surface reconstruction of In2S3 photoanode via flame treatment for enhanced photoelectrochemical performance.Adv Mater2024;2403164

[103]

Gao L,Sewell CD,Lin Z.Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction.Chem Soc Rev2021;50:8428-69

[104]

Guo W,Yang F.Robust interfacial effect in multi-interface environment through hybrid reconstruction chemistry for enhanced energy storage.ACS Nano2023;17:25357-67

PDF

83

Accesses

0

Citation

Detail

Sections
Recommended

/