Unlocking the potential of liquid crystals as phase change materials for thermal energy storage

Rahul Karyappa , Johnathan Lee Joo Cheng , Charissa Lixuan Ho , Suxi Wang , Warinton Thitsartarn , Junhua Kong , Dan Kai , Beng Hoon Tan , Pei Wang , Zhengyao Qu , Xian Jun Loh , Jianwei Xu , Qiang Zhu

Energy Materials ›› 2025, Vol. 5 ›› Issue (4) : 500037

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (4) :500037 DOI: 10.20517/energymater.2024.149
Review

Unlocking the potential of liquid crystals as phase change materials for thermal energy storage

Author information +
History +
PDF

Abstract

This review paper examines the innovative use of liquid crystals (LCs) as phase change materials in thermal energy storage systems. With the rising demand for efficient energy storage, LCs offer unique opportunities owing to their tunable phase transitions, high latent heat, and favorable thermal conductivity. This paper covers various types of LCs, such as nematic, smectic, and cholesteric phases, and their roles in enhancing thermal energy storage. It discusses the mechanisms of LC phase transitions and their impact on energy storage efficiency. Strategies to improve the thermal conductivities of LCs and LC polymers have also been explored. One method involves embedding LC units within the molecular structure to promote orderly arrangement, facilitate heat flow, and reduce phonon scattering. Aligning polymer chains through external fields or mechanical processes significantly improves intrinsic thermal conductivity. The inclusion of thermally conductive fillers and optimization of filler-matrix interactions further boost thermal performance. Challenges related to the scalability, cost-effectiveness, and long-term stability of LC-based phase change materials are addressed, along with future research directions. This review synthesizes the current knowledge and identifies gaps in the literature, providing a valuable resource for researchers and engineers to develop advanced thermal energy storage technologies, contributing to sustainable energy solutions.

Keywords

Liquid crystals / liquid crystal polymers / phase change material / thermal conductivity / thermal energy storage

Cite this article

Download citation ▾
Rahul Karyappa, Johnathan Lee Joo Cheng, Charissa Lixuan Ho, Suxi Wang, Warinton Thitsartarn, Junhua Kong, Dan Kai, Beng Hoon Tan, Pei Wang, Zhengyao Qu, Xian Jun Loh, Jianwei Xu, Qiang Zhu. Unlocking the potential of liquid crystals as phase change materials for thermal energy storage. Energy Materials, 2025, 5(4): 500037 DOI:10.20517/energymater.2024.149

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mao Y,Sakai K,Zhu M.A 3D printable thermal energy storage crystalline gel using mask-projection stereolithography.Polymers2018;10:1117 PMCID:PMC6404010

[2]

Salyan S.Liquid metal gallium laden organic phase change material for energy storage: an experimental study.Int J Hydrogen Energy2018;43:2469-83

[3]

Krašna M,Kutnjak Z.Phase-changing materials for thermal stabilization and thermal transport.Energy2018;162:554-63

[4]

Zhang H,Yuan Y.Porosity reduction of polyethylene glycol phase change materials by using nanoscale thermal-energy-conducting medium during crystallization process.J Appl Polym Sci2017;134:45446

[5]

Zhu Q,Goh SHA.Recent advances in graphene-based phase change composites for thermal energy storage and management.Nano Mater Sci2024;6:115-38

[6]

Wu WY,Wang S,Loh XJ.Recent progress in polyethylene-enhanced organic phase change composite materials for energy management.Chem Asian J2023;18:e202300391

[7]

Wu W,Wang S.Advancements in sustainable phase change materials: valorizing waste for eco-friendly applications.Mater Today Chem2024;39:102163

[8]

Lee JJC,Soo XYD.Upcycling of PET plastics into diethyl terephthalate for applications as phase change materials in energy harvesting.J Energy Storage2023;73:109084

[9]

Prieto C,Pavón-moreno MC.Thermal energy storage for direct steam generation concentrating solar power plants: concept and materials selection.J Energy Storage2024;83:110618

[10]

Kumar A,Rathod BKJ.Solar thermal power plant with thermal energy storage; 2021. pp. 31-80.

[11]

Ismail K.Thermally effective windows with moving phase change material curtains.Appl Therm Eng2001;21:1909-23

[12]

Zhu N,Wang S.Dynamic characteristics and energy performance of buildings using phase change materials: a review.Energy Convers Manag2009;50:3169-81

[13]

Ong PJ,Soo XYD.Integration of phase change material and thermal insulation material as a passive strategy for building cooling in the tropics.Constr Build Mater2023;386:131583

[14]

Bui V,Low Y.Evaluation of building glass performance metrics for the tropical climate.Energy Build2017;157:195-203

[15]

Png ZM,Chua MH,Xu J.Triazine derivatives as organic phase change materials with inherently low flammability.J Mater Chem A2022;10:3633-41

[16]

Alawadhi EM.10 - The design, properties, and performance of concrete masonry blocks with phase change materials. In: Eco-Efficient Masonry Bricks and Blocks. 2015, Elsevier. p. 231-48.

[17]

Roy U.Chapter 9 - Current progress in heat exchangers with phase change materials (PCMs): a comprehensive investigation. In: Advanced Analytic and Control Techniques for Thermal Systems with Heat Exchangers. Elsevier; 2020. pp. 219-30.

[18]

Şahan N,Paksoy H.Improving thermal conductivity phase change materials-a study of paraffin nanomagnetite composites.Solar Energy Mater Solar Cells2015;137:61-7

[19]

Tebaldi ML,Montoro SR.Chapter 8 - Polymers with nano-encapsulated functional polymers: encapsulated phase change materials. In: Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems; 2016, pp. 155-69.

[20]

Hameed G,Yousaf M.Low temperature phase change materials for thermal energy storage: Current status and computational perspectives.Sustain Energy Technol Assess2022;50:101808

[21]

Cárdenas B.High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques.Renew Sustain Energy Rev2013;27:724-37

[22]

Reddy VJ,Kumarasamy S.Advancements in phase change materials for energy-efficient building construction: a comprehensive review.J Energy Storage2024;81:110494

[23]

Klemenčič E.Liquid crystals as phase change materials for thermal stabilization.Adv Cond Matter Phys2018;2018:1-8

[24]

Rojas E,Zarza E.Liquid crystals: a different approach for storing latent energy in a DSG plant.Energy Procedia2015;69:1014-22

[25]

Lagerwall ST.On some important chapters in the history of liquid crystals.Liq Cryst2013;40:1698-729

[26]

Singh S.Phase transitions in liquid crystals.Phys Rep2000;324:107-269

[27]

Stephen MJ.Physics of liquid crystals.Rev Mod Phys1974;46:617-704

[28]

Huang Y.Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion.RSC Adv2018;8:6978-87 PMCID:PMC9078419

[29]

P P,Supreet ,Castagna R.Recent advances and future perspectives on nanoparticles-controlled alignment of liquid crystals for displays and other photonic devices.Crit Rev Solid State Mater Sci2023;48:57-92

[30]

Jung J,Jung HY.Recent progress in liquid crystal devices and materials of TFT-LCDs.J Soc Inf Display2024;25:121-42

[31]

Chen HW,Lin BY,Wu ST.Liquid crystal display and organic light-emitting diode display: present status and future perspectives.Light Sci Appl2018;7:17168 PMCID:PMC6060049

[32]

Wang D,Lin S.Holographic display technology based on liquid crystal device.J Soc Inf Display2020;28:136-47

[33]

Carlton RJ,Miller DS.Chemical and biological sensing using liquid crystals.Liq Cryst Rev2013;1:29-51 PMCID:PMC4005293

[34]

Popov P,Jákli A.Thermotropic liquid crystal films for biosensors and beyond.J Mater Chem B2017;5:5061-78

[35]

Pani I,Pal SK.Liquid crystal biosensors: a new therapeutic window to point-of-care diagnostics.Langmuir2023;39:909-17

[36]

Bayón R,Barcenilla M.Feasibility of storing latent heat with liquid crystals. Proof of concept at lab scale.Appl Sci2016;6:121

[37]

Lee JJC,Ong PJ.Lignin-g-polycaprolactone as a form-stable phase change material for thermal energy storage application.J Energy Storage2022;56:106118

[38]

Soo XYD,Yeo JCC.Polyethylene glycol/polylactic acid block co-polymers as solid-solid phase change materials.SmartMat2023;4:e1188

[39]

Ong PJ,Debbie Soo XY.Surface modification of microencapsulated phase change materials with nanostructures for enhancement of their thermal conductivity.Mater Chem Phys2022;277:125438

[40]

Jin Ong P,Yun Debbie Soo X.Valorization of spent coffee grounds: a sustainable resource for bio-based phase change materials for thermal energy storage.Waste Manag2023;157:339-47

[41]

Ong PJ,Leow Y.Valorization of coconut peat to develop a novel shape-stabilized phase change material for thermal energy storage.J Clean Prod2024;446:141468

[42]

Yu P,He Z,Zhang H.Energy saving phase change energy storage thermochromic liquid crystal display.Opt Mater2023;142:113999

[43]

Zhou L,Miao X.Advancements and applications of liquid crystal/polymer composite films.ACS Mater Lett2023;5:2760-75

[44]

Mac Fhionnlaoich N,Tito NB.Reversible microscale assembly of nanoparticles driven by the phase transition of a thermotropic liquid crystal.ACS Nano2023;17:9906-18 PMCID:PMC10278172

[45]

Li G,Wang J.From anisotropic graphene aerogels to electron- and photo-driven phase change composites.J Mater Chem A2016;4:17042-9

[46]

Zhao Y,Zhao Y.Multi-field driven thermochromic films with phase change energy storage properties.Dyes Pigments2023;208:110759

[47]

Sheng M,Jiang X.Biomimetic solid-liquid transition structural dye-doped liquid crystal/phase-change-material microcapsules designed for wearable bistable electrochromic fabric.ACS Appl Mater Interfaces2021;13:33282-90

[48]

Ye Y,Zhong T.A review of developments in polymer stabilized liquid crystals.Polymers2023;15:2962 PMCID:PMC10346194

[49]

Shibaev VP.Liquid crystalline polymers: development trends and photocontrollable materials.Russ Chem Rev2017;86:1024-72

[50]

Lyu X,Shi D.Liquid crystalline polymers: Discovery, development, and the future.Polymer2020;202:122740

[51]

Shen W.Recent progress in liquid crystal-based smart windows: materials, structures, and design.Laser Photonics Rev2023;17:2200207

[52]

Collyer AA.Liquid crystal polymers: from structures to applications. London, New York: Elsevier; 1992.

[53]

Shibaev VP.Thermotropic liquid-crystalline polymers with mesogenic side groups. In: Platé, N. A.; editors, Liquid Crystal Polymers II/III. Berlin Heidelberg: Springer; 1984, pp. 173-252.

[54]

Park GT,Lim AR.Thermotropic liquid crystalline polymers with various alkoxy side groups: thermal properties and molecular dynamics.Polymers2019;11:992 PMCID:PMC6630353

[55]

Zeng L,Chen P,Liu P.Synthesis and characterization of thermotropic liquid crystalline polyarylate with ether ether ketone segments in the main chain.J Appl Polym Sci2016;133:app.43800

[56]

Sadeghi G.Energy storage on demand: thermal energy storage development, materials, design, and integration challenges.Energy Storage Mater2022;46:192-222

[57]

Konuklu Y,Paksoy HO.Review on using microencapsulated phase change materials (PCM) in building applications.Energy Build2015;106:134-55

[58]

Pielichowska K.Phase change materials for thermal energy storage.Prog Mater Sci2014;65:67-123

[59]

Sharshir SW,Elsharkawy M.Thermal energy storage using phase change materials in building applications: A review of the recent development.Energy Build2023;285:112908

[60]

Jayathunga D,Narayana M.Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review.Renew Sustain Energy Rev2024;189:113904

[61]

Gu H,Yao X,Zou D.Review on heat pump (HP) coupled with phase change material (PCM) for thermal energy storage.Chem Eng J2023;455:140701

[62]

Freeman TB,Troxler CJ.Advanced materials and additive manufacturing for phase change thermal energy storage and management: a review.Adv Energy Mater2023;13:2204208

[63]

Sheikh Y,Sakhi S.A review on micro-encapsulated phase change materials (EPCM) used for thermal management and energy storage systems: fundamentals, materials, synthesis and applications.J Energy Storage2023;72:108472

[64]

Liu C,Zhao J.Polymer engineering in phase change thermal storage materials.Renew Sustain Energy Rev2023;188:113814

[65]

Esteves C,Porteira ARP,Roque ACA.Seeing the unseen: the role of liquid crystals in gas-sensing technologies.Adv Opt Mater2020;8:1902117 PMCID:PMC7329384

[66]

Nesterkina M,Hirsch AKH.Thermotropic liquid crystals in drug delivery: a versatile carrier for controlled release.Eur J Pharm Biopharm2024;200:114343

[67]

Zhang Z,Zhao Y,Shang L.Liquid crystal materials for biomedical applications.Adv Mater2023;35:e2300220

[68]

Wang Z,Noel A,Liu T.Applications of liquid crystals in biosensing.Soft Matter2021;17:4675-702

[69]

Zhang W,Schenning APHJ,Debije MG.Temperature-responsive photonic devices based on cholesteric liquid crystals.Adv Photon Res2021;2:2100016

[70]

Yin K,Zou J.Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications.Light Sci Appl2022;11:161 PMCID:PMC9151772

[71]

Yu C,Li G.Energy harvesting and electricity production through dissolved carbon dioxide by connecting two form-stable phase change materials.J Mater Chem A2024;12:7943-55

[72]

Rea JE,Olsen ML.Performance modeling and techno-economic analysis of a modular concentrated solar power tower with latent heat storage.Appl Energy2018;217:143-52

[73]

Cao J,Tan XY.Upcycling silicon photovoltaic waste into thermoelectrics.Adv Mater2022;34:e2110518

[74]

Zheng J,Wong CJE.Integrating recyclable polymers into thermoelectric devices for green electronics.J Mater Chem A2022;10:19787-96

[75]

Zhu Q,Wang X.Effect of substituents in sulfoxides on the enhancement of thermoelectric properties of PEDOT:PSS: experimental and modelling evidence.Mol Syst Des Eng2020;5:976-84

[76]

Tang T,Zhu Q.Water-dispersible conducting polyazulene and its application in thermoelectrics.Chem Commun2020;56:9388-91

[77]

Yemata TA,Zheng Y.Enhanced thermoelectric performance of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) with long-term humidity stability via sequential treatment with trifluoroacetic acid.Polym Int2020;69:84-92

[78]

Cao J,Liu H.Flexible elemental thermoelectrics with ultra-high power density.Mater Today Energy2022;25:100964

[79]

Dong J,Tan XY.Challenges and opportunities in low-dimensional thermoelectric nanomaterials.Mater Today2023;66:137-57

[80]

Glatzmaier GC,Olsen ML.Solar thermoelectricity via advanced latent heat storage: a cost-effective small-scale CSP application. AIP Conf Proc 2017;1850:030019.

[81]

de Gennes PG.The physics of liquid crystals. Oxford, UK: Clarendon Press; 1995.

[82]

Labeeb AM,Ward AA.Polymer/liquid crystal nanocomposites for energy storage applications.Polym Eng Sci2020;60:2529-40

[83]

Bayón R.Liquid crystals: a new approach for latent heat storage: ‘Always liquid’ phase change materials for energy storage in DSG.Int J Energy Res2013;37:1737-42

[84]

Dominguez-Candela I,Pintre I.Light-responsive bent-core liquid crystals as candidates for energy conversion and storage.J Mater Chem C2022;10:18200-12

[85]

Gupta M,Abhinand Krishna KM.Sunlight driven E - Z isomerization of liquid crystals based on hexahydroxytriphenylene nano-templates for enhanced solid-state solar thermal energy storage.J Mater Chem A2024;12:27373-80

[86]

Kinyanjui Muiruri J,Yun Debbie Soo X.Recent advances of sustainable Short-chain length polyhydroxyalkanoates (Scl-PHAs) - Plant biomass composites.Eur Polym J2023;187:111882

[87]

Soo XYD,Lim QF.Hydrolytic degradation and biodegradation of polylactic acid electrospun fibers.Chemosphere2024;350:141186

[88]

Muiruri JK,Zhu Q,Loh XJ.Sustainable mycelium-bound biocomposites: design strategies, materials properties, and emerging applications.ACS Sustain Chem Eng2023;11:6801-21

[89]

Chua MH,Ong PJ.Towards modulating the colour hues of isoindigo-based electrochromic polymers through variation of thiophene-based donor groups.Polym Chem2022;13:967-81

[90]

Noël C.Liquid crystal polymers.Prog Polym Sci1991;16:55-110

[91]

Liu Y,Qi Y.Cross-linked liquid crystalline polybenzoxazines bearing cholesterol-based mesogen side groups.Polymer2018;145:252-60

[92]

Cai F,Yang B,Zhang L.Enhancement of solar thermal fuel by microphase separation and nanoconfinement of a block copolymer.Chem Mater2021;33:9750-9

[93]

Yu Z,Feng Y.Thermal conductivity and energy storage capacity enhancement and bottleneck of shape-stabilized phase change composites with graphene foam and carbon nanotubes.Compos Part A Appl Sci Manuf2022;152:106703

[94]

Belinson M.Numerical study of a latent heat storage system’s performance as a function of the phase change material’s thermal conductivity.Appl Sci2024;14:3318

[95]

Ye W,Khodadadi JM.Improved performance of latent heat energy storage systems in response to utilization of high thermal conductivity fins.Energies2023;16:1277

[96]

Dhaidan NS.Improved performance of latent heat energy storage systems utilizing high thermal conductivity fins: a review.J Renew Sustain Energy2017;9:034103

[97]

Agarwal A.Characterization of commercial grade paraffin wax as latent heat storage material for solar dryers.Mater Today Proc2017;4:779-89

[98]

Zalba B,Cabeza LF.Review on thermal energy storage with phase change: materials, heat transfer analysis and applications.Appl Therm Eng2003;23:251-83

[99]

Bharathiraja R,Selvakumar M.Studies on the thermal characteristics of nano-enhanced paraffin wax phase change material (PCM) for thermal storage applications.J Energy Storage2023;73:109216

[100]

Konuklu Y,Paksoy HO.Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage.Solar Energy Mater Solar Cells2014;120:536-42

[101]

Sivasamy P,Jayavel R,Kalaiselvam S.Preparation and thermal characteristics of caprylic acid based composite as phase change material for thermal energy storage.Mater Res Express2019;6:105051

[102]

Xiong T,Dissanayake PD.Preparation and thermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stem biochar microparticles.Sci Total Environ2022;827:154341

[103]

Liu P,Bian L,Peng L.Thermal properties and enhanced thermal conductivity of capric acid/diatomite/carbon nanotube composites as form-stable phase change materials for thermal energy storage.ACS Omega2019;4:2964-72

[104]

Sari A.Thermal performance of palmitic acid as a phase change energy storage material.Energy Convers Manag2002;43:863-76

[105]

Wang J,Xin Z.Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes.Carbon2010;48:3979-86

[106]

Faden M,Wanner J,Brüggemann D.Review of thermophysical property data of octadecane for phase-change studies.Materials2019;12:2974 PMCID:PMC6766243

[107]

Nguyen GT,Lee J,Park I.n-octadecane/fumed silica phase change composite as building envelope for high energy efficiency.Nanomaterials2021;11:566 PMCID:PMC7996136

[108]

Tyagi VV.PCM thermal storage in buildings: a state of art.Renew Sustain Energy Rev2007;11:1146-66

[109]

Sathyamurthy R.Silver (Ag) based nanoparticles in paraffin wax as thermal energy storage for stepped solar still - An experimental approach.Solar Energy2023;262:111808

[110]

Mehling H.Heat transfer basics. In: Heat and cold storage with PCM. Berlin, Heidelberg: Springer; 2008.

[111]

Prabhu B.Stability analysis of TiO2-Ag nanocomposite particles dispersed paraffin wax as energy storage material for solar thermal systems.Renew Energy2020;152:358-67

[112]

Dixit P,Parvate S,Dasari A.Thermal buffering performance of a propyl palmitate/expanded perlite-based form-stable composite: experiment and numerical modeling in a building model.Energy Fuels2021;35:2704-16

[113]

Shi J,Liu Y.Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives.Carbon2013;51:365-72

[114]

Hirano S,Oya M.Temperature dependence of thermophysical properties of disodium hydrogenphosphate dodecahydrate.J Thermophys Heat Transfer2001;15:340-6

[115]

Xiao X,Li M.Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage.Int J Therm Sci2014;81:94-105

[116]

Ndukwu MC.Potential of integrating Na2SO4·10H2O pellets in solar drying system.Dry Technol2018;36:1017-30

[117]

Tao W,Bao A,Zhang Y.Preparation and phase change performance of graphene oxide and silica composite Na2SO4·10H2O phase change materials (PCMs) as thermal energy storage materials.Materials2020;13:5186 PMCID:PMC7698442

[118]

Hasnain S.Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques.Energy Convers Manag1998;39:1127-38

[119]

Zhang L,Wei Q.Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage.Appl Energy2019;233-4:208-19

[120]

Farid MM,Razack SAK.A review on phase change energy storage: materials and applications.Energy Convers Manag2004;45:1597-615

[121]

Dong K,Zou D,Yi X.High anisotropic thermal conductivity, long durability form-stable phase change composite enhanced by a carbon fiber network structure.Crystals2021;11:230

[122]

Ling Z,Wang Q,Fang X.MgCl2·6H2O-Mg(NO3)2·6H2O eutectic/SiO2 composite phase change material with improved thermal reliability and enhanced thermal conductivity.Solar Energy Mater Solar Cells2017;172:195-201

[123]

Mao J,Liu R,Dong X.Preparation and thermal properties of SAT-CMC-DSP/EG composite as phase change material.Appl Therm Eng2017;119:585-92

[124]

Williams JD.A review of thermal property enhancements of low-temperature nano-enhanced phase change materials.Nanomaterials2021;11:2578 PMCID:PMC8538295

[125]

Li M.A nano-graphite/paraffin phase change material with high thermal conductivity.Appl Energy2013;106:25-30

[126]

Jebasingh B, Valan Arasu A. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications.Energy Storage Mater2020;24:52-74

[127]

Shahid UB.A critical review of phase change material composite performance through Figure-of-Merit analysis: graphene vs boron nitride.Energy Storage Mater2021;34:365-87

[128]

Shao L,Kim G.Figure-of-merit for phase-change materials used in thermal management.Int J Heat Mass Transfer2016;101:764-71

[129]

Tripathi PM.A new thermal management figure of merit for design of thermal energy storage with phase change materials.Int J Heat Mass Transfer2024;220:124952

[130]

Ahlers G,Berge LI.Thermal conductivity of the nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl.Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top1994;49:545-53

[131]

Mercuri F,Marinelli M.Effect of the nematic range on the critical behavior and anisotropy of the heat transport parameters at the smectic- A - nematic phase transition.Phys Rev E1998;57:596-602

[132]

Abdulkarim-talaq M,Hameed DA.Improvement of thermal conductivity of novel asymmetric dimeric coumarin liquid crystal by doping with boron nitride and aluminium oxide nanoparticles.Mater Chem Phys2023;297:127367

[133]

Collings PJ.Introduction to liquid crystals: chemistry and physics. Boca Raton, FL: CRC Press; 2020.

[134]

Brouckaert N,Orlova T.Nanoparticle-induced property changes in nematic liquid crystals.Nanomaterials2022;12:341 PMCID:PMC8839905

[135]

Kashyap B,Rastogi A.Enhancing liquid crystal properties through nanoparticle doping: a mini review.Asian J Chem2024;36:543-8

[136]

Orlandi S,Miglioli I,Reshetnyak V.Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape.Phys Chem Chem Phys2016;18:2428-41

[137]

Lee HL,Belmahi M,Rinnert H.Thermal and optical properties of CdS Nanoparticles in thermotropic liquid crystal monomers.Materials2010;3:2069-86 PMCID:PMC5445895

[138]

Montazami R,Naciri J.Enhanced thermomechanical properties of a nematic liquid crystal elastomer doped with gold nanoparticles.Sensor Actuat A Phys2012;178:175-8

[139]

Özgan Ş,Tapkıranlı Y.Thermal and electro-optic properties of graphene oxide-doped hexylcyanobiphenyl liquid crystal.J Theor Appl Phys2018;12:169-76

[140]

Mohammad A,Hameed DA.Liquid crystalline behaviour of new dimers containing coumarin and biphenyl moieties and enhancement of their thermal conductivity: liquid crystal-nanoparticles.Liq Cryst2023;50:881-90

[141]

Singh S.Impact of dispersion of nanoscale particles on the properties of nematic liquid crystals.Crystals2019;9:475

[142]

Yeo RJ,Yu Tan S.Core-shell micro- and nano-structures for the modification of light-surface interactions.Adv Opt Mater2024;12:2301955

[143]

Yeo R,Tomczak N.Tailoring surface reflectance through nanostructured materials design for energy-efficient applications.Mater Today Chem2023;30:101593

[144]

Zhang T.Role of chain morphology and stiffness in thermal conductivity of amorphous polymers.J Phys Chem B2016;120:803-12

[145]

Soo XYD,Wu WY.Bio-polyethylene and polyethylene biocomposites: an alternative toward a sustainable future.Macromol Rapid Commun2024;45:e2400064

[146]

Wang S,Soo XYD.Bio-polypropylene and polypropylene-based biocomposites: solutions for a sustainable future.Chem Asian J2023;18:e202200972

[147]

Png ZM,Yeo JCC.Stimuli-responsive structure-property switchable polymer materials.Mol Syst Des Eng2023;8:1097-129

[148]

Lv G,Shan N.Odd-even effect on the thermal conductivity of liquid crystalline epoxy resins.Proc Natl Acad Sci USA2022;119:e2211151119 PMCID:PMC9674956

[149]

Li Y,Li C.Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films.J Mater Sci Technol2021;82:250-6

[150]

Koda T,Komatsu T,Nishioka A.Ordering simulation of high thermal conductivity epoxy resins.Polym J2013;45:444-8

[151]

Zhang Q,Wu K,Liang L.Biphenyl liquid crystal epoxy containing flexible chain: synthesis and thermal properties.J Appl Polym Sci2020;137:49143

[152]

Rashidi V,Sebeck K,Pipe KP.Thermal conductance in cross-linked polymers: effects of non-bonding interactions.J Phys Chem B2017;121:4600-9

[153]

Kim GH,Shanker A.High thermal conductivity in amorphous polymer blends by engineered interchain interactions.Nat Mater2015;14:295-300

[154]

Zhang L,Zhang X,Liu L.Tuning thermal conductivity of crystalline polymer nanofibers by interchain hydrogen bonding.RSC Adv2015;5:87981-6

[155]

Yuan SJ,Rong MZ.Enhancement of intrinsic thermal conductivity of liquid crystalline epoxy through the strategy of interlocked polymer networks.Mater Chem Front2022;6:1137-49

[156]

Singh V,Weathers A.High thermal conductivity of chain-oriented amorphous polythiophene.Nat Nanotechnol2014;9:384-90

[157]

Leung SN,Naguib H.Multifunctional polymer nanocomposites with uniaxially aligned liquid crystal polymer fibrils and graphene nanoplatelets.Appl Phys Lett2014;104:081904

[158]

Liu J.Tuning the thermal conductivity of polymers with mechanical strains.Phys Rev B2010;81:174122

[159]

Bai L,Bao R,Yang M.Effect of temperature, crystallinity and molecular chain orientation on the thermal conductivity of polymers: a case study of PLLA.J Mater Sci2018;53:10543-53

[160]

Kim DG,Shin TJ.Highly anisotropic thermal conductivity of discotic nematic liquid crystalline films with homeotropic alignment.Chem Commun2017;53:8227-30

[161]

Karyappa R.Chocolate-based ink three-dimensional printing (Ci3DP).Sci Rep2019;9:14178 PMCID:PMC6775229

[162]

Ghodbane SA,Dunn MG.Achieving molecular orientation in thermally extruded 3D printed objects.Biofabrication2019;11:045004 PMCID:PMC6686179

[163]

Loskot J,Loskot R.Influence of print speed on the microstructure, morphology, and mechanical properties of 3D-printed PETG products.Polym Test2023;123:108055

[164]

Seshadri B,Masania K.3D printed liquid crystal polymer thermosiphon for heat transfer under vacuum.Adv Mater Technol2023;8:2300403

[165]

Luo F,Yan P.Orientation behavior and thermal conductivity of liquid crystal polymer composites based on three-dimensional printing.Compos Part A Appl Sci Manuf2022;160:107059

[166]

Houriet C,Mascolo C,Peeters D.3D printing of flow-inspired anisotropic patterns with liquid crystalline polymers.Adv Mater2024;36:e2307444

[167]

Johann KS,Kapernaum N,Bonten C.Orientation of liquid crystalline polymers after filament extrusion and after passing through a 3D printer nozzle.ACS Appl Polym Mater2024;6:10006-18

[168]

Karyappa R,Hashimoto M.Immersion precipitation 3D printing (ip3DP).Mater Horiz2019;6:1834-44

[169]

Karyappa R,Zhu Q.Printability of poly(lactic acid) ink by embedded 3D printing via immersion precipitation.ACS Appl Mater Interfaces2023;15:21575-84

[170]

Karyappa R.Freeform polymer precipitation in microparticulate gels.ACS Appl Polym Mater2021;3:908-19

[171]

Karyappa R,Zhu Q,Suwardi A.Newtonian liquid-assisted material extrusion 3D printing: progress, challenges and future perspectives.Addit Manuf2024;79:103903

[172]

Wang S,Liu S.Recent advances in host-guest supramolecular hydrogels for biomedical applications.Chem Asian J2022;17:e202200608

[173]

Zhu H,Wang CG.Flexible polymeric patch based nanotherapeutics against non-cancer therapy.Bioact Mater2022;18:471-91 PMCID:PMC8971585

[174]

Liu M,Zhu Q.Antioxidant thermogelling formulation for burn wound healing.Chem Asian J2022;17:e202200396

[175]

Wei F,Chew LT.Grain distribution characteristics and effect of diverse size distribution on the Hall-Petch relationship for additively manufactured metal alloys.J Mater Res Technol2022;20:4130-6

[176]

Wu J,Wang S.Polymer electrolytes for flexible zinc-air batteries: recent progress and future directions.Nano Res2024;17:6058-79

[177]

Li M,Zhang Z.Electric-field-aligned liquid crystal polymer for doubling anisotropic thermal conductivity.Commun Mater2024;5:455

[178]

Wang M,Yang H.Homeotropically-aligned main-chain and side-on liquid crystalline elastomer films with high anisotropic thermal conductivities.Chem Commun2016;52:4313-6

[179]

Kurabayashi K.Anisotropic thermal energy transport in polarized liquid crystalline (LC) polymers under electric fields.Microsc Thermophys Eng2003;7:87-99

[180]

Shin J,Tsai T,Braun PV.Thermally functional liquid crystal networks by magnetic field driven molecular orientation.ACS Macro Lett2016;5:955-60

[181]

Harada M,Tobita M.Thermomechanical properties of liquid-crystalline epoxy networks arranged by a magnetic field.J Polym Sci B Polym Phys2004;42:758-65

[182]

Varela-Domínguez N,López-Moreno A.Light-induced bi-directional switching of thermal conductivity in azobenzene-doped liquid crystal mesophases.J Mater Chem C Mater2023;11:4588-94 PMCID:PMC10077501

[183]

Shin J,Kang M.Light-triggered thermal conductivity switching in azobenzene polymers.Proc Natl Acad Sci USA2019;116:5973-8

[184]

Dai M,Verjans JM.Humidity-responsive bilayer actuators based on a liquid-crystalline polymer network.ACS Appl Mater Interfaces2013;5:4945-50

[185]

Lan R,Yao W,Chen X.Bioinspired humidity-responsive liquid crystalline materials: from adaptive soft actuators to visualized sensors and detectors.Mater Horiz2023;10:2824-44

[186]

Ji Y,Cai F.Regulating surface topography of liquid-crystalline polymers by external stimuli.Macro Chem Phys2022;223:2100418

[187]

Gupta M.Solar thermal energy storage systems based on discotic nematic liquid crystals that can efficiently charge and discharge below 0 °C.Adv Energy Mater2024;14:2303845

[188]

Liu J,Lv C.Electrocatalytic upgrading of nitrogenous wastes into value-added chemicals: a review.Mater Today2024;73:208-59

[189]

Hu E,Zhu Q.Engineering high voltage aqueous aluminum-ion batteries.Small2024;e2309252

[190]

Jia B,Hu Z.Laminated tin-aluminum anodes to build practical aqueous aluminum batteries.Energy Storage Mater2024;65:103141

[191]

Yeo RJ,Wang C,Zhu Q.Strategies for heavy metals immobilization in municipal solid waste incineration bottom ash: a critical review.Rev Environ Sci Biotechnol2024;23:503-68

[192]

Wu WY,Wang C,Bu J.Harnessing ash for sustainable CO2 absorption: current strategies and future prospects.Chem Asian J2024;19:e202400180

[193]

Soo XYD,Wu W.Advancements in CO2 capture by absorption and adsorption: a comprehensive review.J CO2 Util2024;81:102727

[194]

Soo XYD,Tan SY.Ultra-high performance thermochromic polymers via a solid-solid phase transition mechanism and their applications.Adv Mater2024;36:e2405430

[195]

Kalinin D.The applications of machine learning in the study of liquid crystals: a review.J Stud Res2023;12:3983

[196]

Maeda H,Marui R.Discovery of liquid crystalline polymers with high thermal conductivity using machine learning. ChemRxiv 2024.

[197]

Wu D,Liu Y,Zhang H.Preparation and characterization of side-chain liquid crystal polymer/paraffin composites as form-stable phase change materials.J Mater Chem A2015;3:9645-57

[198]

Han GGD,Grossman JC.Optically-controlled long-term storage and release of thermal energy in phase-change materials.Nat Commun2017;8:1446 PMCID:PMC5684416

[199]

Wu S,Kakimoto M.Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm.NPJ Comput Mater2019;5:203

[200]

Zhu M,Yu Q,Zhang H.Machine-learning-driven discovery of polymers molecular structures with high thermal conductivity.Int J Heat Mass Transfer2020;162:120381

[201]

Inokuchi T,Arai N.Predicting molecular ordering in a binary liquid crystal using machine learning.Liq Cryst2020;47:438-48

[202]

Osiecka-Drewniak N,Juszyńska-Gałązka E.Machine learning studies for liquid crystal texture recognition.Liq Cryst2024;51:255-64

PDF

233

Accesses

0

Citation

Detail

Sections
Recommended

/