Formation of a stable LiF-rich SEI layer on molybdenum-based MXene electrodes for enhanced lithium metal batteries

Shakir Zaman , Mugilan Narayanasamy , Shabbir Madad Naqvi , Tufail Hassan , Aamir Iqbal , Ujala Zafar , Noushad Hussain , Seunghwan Jeong , Soo Yeong Cho , Sungmin Jung , Chong Min Koo

Energy Materials ›› 2025, Vol. 5 ›› Issue (3) : 500028

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (3) :500028 DOI: 10.20517/energymater.2024.133
Article

Formation of a stable LiF-rich SEI layer on molybdenum-based MXene electrodes for enhanced lithium metal batteries

Author information +
History +
PDF

Abstract

Lithium metal batteries are considered highly promising candidates for the next-generation high-energy storage system. However, the growth of lithium dendrites significantly hinders their advance, particularly under high current densities, due to the formation of unstable solid electrolyte interphase (SEI) layers. In this study, we demonstrate that molybdenum-based MXenes, including Mo2CTx, Mo2TiC2Tx, and Mo2Ti2C3Tx, form more stable LiF/Li2CO3 SEI layers during lithium plating, compared to the conventional Cu electrode. Among these, the bimetallic Mo2Ti2C3Tx MXene, with its higher fluorine terminations, produces the most stable LiF-rich SEI layer. The formation of this stable inorganic SEI layer significantly reduces the nucleation overpotential for lithium deposition, promotes uniform Li deposition, and suppresses dendrite growth. Consequently, the Mo2Ti2C3Tx substrate achieved prolonged cycling stability of approximately 544 cycles with coulombic efficiency of ~99.79% at high current density of 3 mA cm-2 and capacity of 1 mAh cm-2. In full cells, the Mo2Ti2C3Tx anode, paired with an NCM622 cathode, maintained capacity retention of 70% over 100 cycles with high cathode loading of 10 mg cm-2. Our approach highlights the potential of Mo-based MXenes to improve the performance of lithium metal batteries, making them promising candidates for the next-generation energy storage system.

Keywords

Lithium metal battery / molybdenum MXenes / SEI layer / lithium dendrite

Cite this article

Download citation ▾
Shakir Zaman, Mugilan Narayanasamy, Shabbir Madad Naqvi, Tufail Hassan, Aamir Iqbal, Ujala Zafar, Noushad Hussain, Seunghwan Jeong, Soo Yeong Cho, Sungmin Jung, Chong Min Koo. Formation of a stable LiF-rich SEI layer on molybdenum-based MXene electrodes for enhanced lithium metal batteries. Energy Materials, 2025, 5(3): 500028 DOI:10.20517/energymater.2024.133

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiao S,Li Q.Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries.Joule2018;2:110-24

[2]

Li G,Huang Q.Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects.Nat Energy2018;3:1076-83

[3]

Zhao L,Qin XY.Revisiting the roles of natural graphite in ongoing lithium-ion batteries.Adv Mater2022;34:e2106704

[4]

Kim JM,Lu B.High current-density-charging lithium metal batteries enabled by double-layer protected lithium metal anode.Adv Funct Mater2022;32:2207172

[5]

Wang T,Zhang J.Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries.Nat Commun2020;11:5429 PMCID:PMC7591880

[6]

Lin D,Cui Y.Reviving the lithium metal anode for high-energy batteries.Nat Nanotechnol2017;12:194-206

[7]

Cheng XB,Zhao CZ.Toward safe lithium metal anode in rechargeable batteries: a review.Chem Rev2017;117:10403-73

[8]

Tan J,Dong P,Ye M.A growing appreciation for the role of LiF in the solid electrolyte interphase.Adv Energy Mater2021;11:2100046

[9]

von Aspern N, Röschenthaler GV, Winter M, Cekic-Laskovic I. Fluorine and lithium: ideal partners for high-performance rechargeable battery electrolytes.Angew Chem Int Ed2019;58:15978-6000

[10]

Alvarado J,Pollard TP.Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes.Energy Environ Sci2019;12:780-94

[11]

Weber R,Louli AJ.Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte.Nat Energy2019;4:683-9

[12]

Umh HN,Yeo J,Nam I.Lithium metal anode on a copper dendritic superstructure.Electrochem Commun2019;99:27-31

[13]

Yan K,Lee HW.Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth.Nat Energy2016;1:16010

[14]

Jiang G,Wang H.Perspective on high-concentration electrolytes for lithium metal batteries.Small Struct2021;2:2000122

[15]

Chae SU,Yoon J.Highly defective Ti3CNTx-MXene-based fiber membrane anode for lithium metal batteries.Energy Storage Mater2022;52:76-84

[16]

Lee JH,Gu D.2D PdTe2 thin-film-coated current collectors for long-cycling anode-free rechargeable batteries.ACS Appl Mater Interfaces2022;14:15080-9

[17]

Xu M,Li Y,Sun N.Atom-dominated relay catalysis of high-entropy MXene promotes cascade polysulfide conversion for lithium-sulfur batteries.Energy Environ Sci2024;17:7735-48

[18]

Zhang D,Li B,Yang S.Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes.Adv Mater2019;31:e1901820

[19]

Ha S,Lim HK,Kim SJ.Lithiophilic MXene-guided lithium metal nucleation and growth behavior.Adv Funct Mater2021;31:2101261

[20]

Yao W,Xu J.Polypyrrole nanotube sponge host for stable lithium-metal batteries under lean electrolyte conditions.ACS Sustain Chem Eng2021;9:2543-51

[21]

Liu C,Chen K.MXene-BN-introduced artificial SEI to inhibit dendrite growth of lithium metal batteries.ACS Appl Mater Interfaces2023;15:56356-64

[22]

Narayanasamy M,Koo CM.2D MXenes for all-solid-state batteries: a comprehensive review.Mater Today Energy2023;37:101405

[23]

Anasori B,Gogotsi Y.2D metal carbides and nitrides (MXenes) for energy storage.Nat Rev Mater2017;2:16098

[24]

Anasori B,Beidaghi M.Two-dimensional, ordered, double transition metals carbides (MXenes).ACS Nano2015;9:9507-16

[25]

Halim J,Lukatskaya MR.Synthesis and characterization of 2D molybdenum carbide (MXene).Adv Funct Mater2016;26:3118-27

[26]

Iqbal A,Hassan T.Environmentally stable and highly crystalline MXenes for multispectral electromagnetic shielding up to millimeter waves.Adv Funct Mater2024;2409346

[27]

Iqbal A,Hantanasirisakul K.Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene).Science2020;369:446-50

[28]

Shahzad F,Hatter CB.Electromagnetic interference shielding with 2D transition metal carbides (MXenes).Science2016;353:1137-40

[29]

Halim J,Eklund P,Barsoum MW.XPS of cold pressed multilayered and freestanding delaminated 2D thin films of Mo2TiC2Tz and Mo2Ti2C3Tz (MXenes).Appl Surf Sci2019;494:1138-47

[30]

Kwon HM,Hong SJ.Uniform Li-metal growth on renewable lignin with lithiophilic functional groups derived from wood for high-performance Li-metal batteries.Surf Interfaces2024;44:103643

[31]

Cui S,Yang W.Large-scale modification of commercial copper foil with lithiophilic metal layer for Li metal battery.Small2020;16:e1905620

[32]

Yin D,Wang S.Free-standing 3D nitrogen-carbon anchored Cu nanorod arrays: in situ derivation from a metal-organic framework and strategy to stabilize lithium metal anodes.J Mater Chem A2020;8:1425-31

[33]

Lin H,Wang Y,Tie Z.Template-sacrificed hot fusion construction and nanoseed modification of 3D porous copper nanoscaffold host for stable-cycling lithium metal anodes.Adv Funct Mater2021;31:2102735

[34]

Huang S,Ming H,Fan LZ.Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries.Nano Lett2019;19:1832-7

[35]

Li N,Zhang K.Normalized lithium growth from the nucleation stage for dendrite-free lithium metal anodes.Angew Chem Int Ed2019;131:18414-9

[36]

Yang D,Lian R.Mechanisms of the planar growth of lithium metal enabled by the 2D lattice confinement from a Ti3C2Tx MXene intermediate layer.Adv Funct Mater2021;31:2010987

[37]

Wang G,Chen Y.Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode.Angew Chem Int Ed2020;59:2055-60

[38]

Fei G,Liu X.Suppressing Li dendrite by a guar gum natural polymer film for high-performance lithium metal anodes.J Appl Polym Sci2024;141:e55127

[39]

Ma M,Wen P.Reactive solid polymer layer: from a single fluoropolymer to divergent fluorinated interface.Angew Chem Int Ed2024;136:e202407304

[40]

Chu F,Liu J,Song L.Constructing a fluorinated interface layer enriched with Ge nanoparticles and Li-Ge alloy for stable lithium metal anodes.Nano Res2024;17:5148-58

[41]

Zhang L,Gao J.Multi-component lithiophilic alloy film modified Cu current collector for long-life lithium metal batteries by a novel FCVA Co-deposition system.Small2024;20:e2402752

[42]

Ding F,Chen X.Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode.J Electrochem Soc2013;160:A1894

[43]

Hu X,Liu J,Bai Y.Constructing LiF/Li2CO3-rich heterostructured electrode electrolyte interphases by electrolyte additive for 4.5 V well-cycled lithium metal batteries.Sci Bull2023;68:1295-305

[44]

Peng JY,Li WJ.A high-performance rechargeable Li-O2 battery with quasi-solid-state electrolyte.Chinese Phys B2018;27:078201

[45]

Beheshti SH,Omidvar H.Development, retainment, and assessment of the graphite-electrolyte interphase in Li-ion batteries regarding the functionality of SEI-forming additives.iScience2022;25:103862 PMCID:PMC8859004

[46]

Zhang B,Xie Q.Ti3CNTx MXene/rGO scaffolds directing the formation of a robust, layered SEI toward high-rate and long-cycle lithium metal batteries.Energy Storage Mater2023;58:322-31

[47]

Li Z,Huang X.Unveiling the mystery of LiF within solid electrolyte interphase in lithium batteries.Small2024;20:e2305429

[48]

Zheng J,Zhang B.Lithium ion diffusion mechanism on the inorganic components of the solid-electrolyte interphase.J Mater Chem A2021;9:10251-9

[49]

Fan L,Gao L,Archer LA.Regulating Li deposition at artificial solid electrolyte interphases.J Mater Chem A2017;5:3483-92

[50]

Ozhabes Y,Arias TA.Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression.arXiv2015;150405799

[51]

Han B,Zou Y.Poor stability of Li2CO3 in the solid electrolyte interphase of a lithium-metal anode revealed by cryo-electron microscopy.Adv Mater2021;33:e2100404

[52]

Mahne N,McCloskey BD.Electrochemical oxidation of lithium carbonate generates singlet oxygen.Angew Chem Int Ed2018;57:5529-33 PMCID:PMC5947587

[53]

Hussain I,Bibi F.Mo-based MXenes: synthesis, properties, and applications.Adv Colloid Interface Sci2024;324:103077

[54]

Yang Y,Shi Z,Arramel A.Unveiling the key intermediates in electrocatalytic synthesis of urea with CO2 and N2 coupling reactions on double transition-metal MXenes.J Mater Chem A2023;11:6428-39

[55]

Liu H,Jing Z,Cheng Y.Bare Mo-based ordered double-transition metal MXenes as high-performance anode materials for aluminum-ion batteries.J Phys Chem C2020;124:25769-74

PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

/