Optimization strategies for high-performance aqueous zinc-sulfur batteries: challenges and future perspectives

Yunyan Chen , Jiaoyi Ning , Yunxiang Wen , Kexin Yao , Yuxin Zhang

Energy Materials ›› 2025, Vol. 5 ›› Issue (4) : 500035

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (4) :500035 DOI: 10.20517/energymater.2024.123
Review

Optimization strategies for high-performance aqueous zinc-sulfur batteries: challenges and future perspectives

Author information +
History +
PDF

Abstract

Aqueous zinc-sulfur batteries (AZSBs) have emerged as promising candidates for high-energy density, cost-effective, and environmentally sustainable energy storage systems. Despite their potential, several challenges hinder the realization of high-performance AZSBs, including sluggish reaction kinetics, disproportionation reactions of ZnS in water, low conductivity and volume expansion of the sulfur cathode, poor wetting properties, and dendrite growth issues of the zinc anode. This review comprehensively summarizes optimization strategies for overcoming these challenges. We discuss cathode modification approaches, such as sulfur/carbon composites, sulfide composites, and catalytic sulfur matrices, which address low conductivity and volume expansion while enhancing sulfur conversion reaction kinetics. Additionally, electrolyte engineering strategies, including the use of iodide-based additives and co-solvent modifications, are examined for their effectiveness in improving reaction kinetics and wetting properties. Despite these advancements, AZSBs still face issues with long-cycle stability. Therefore, this review proposes future perspectives for the development of AZSBs. We aim to provide valuable insights into sulfur-based cathode materials and advance the achievement of high-performance AZSBs.

Keywords

Aqueous zinc-sulfur batteries / sulfur cathode / electrolyte additive / sulfur redox chemistry

Cite this article

Download citation ▾
Yunyan Chen, Jiaoyi Ning, Yunxiang Wen, Kexin Yao, Yuxin Zhang. Optimization strategies for high-performance aqueous zinc-sulfur batteries: challenges and future perspectives. Energy Materials, 2025, 5(4): 500035 DOI:10.20517/energymater.2024.123

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armaroli N.The future of energy supply: challenges and opportunities.Angew Chem Int Ed2007;46:52-66

[2]

Guo YG,Wan LJ.Nanostructured materials for electrochemical energy conversion and storage devices.Adv Mater2008;20:2878-87

[3]

Manthiram A,Sarkar A.Nanostructured electrode materials for electrochemical energy storage and conversion.Energy Environ Sci2008;1:621

[4]

Wang H.Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.Chem Soc Rev2013;42:3088-113

[5]

Luo LW,Wu X.A Zn-S aqueous primary battery with high energy and flat discharge plateau.Chem Commun2021;57:9918-21

[6]

Wang W,Sun Q.Application of energy storage in integrated energy systems - A solution to fluctuation and uncertainty of renewable energy.J Energy Storage2022;52:104812

[7]

He Q,Chen H.Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries.Chem Soc Rev2024;53:7091-157

[8]

Tian H,Wang S.High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode.Nat Commun2020;11:5025 PMCID:PMC7538427

[9]

Han C,Li W,Dou S.Controlled synthesis of copper telluride nanostructures for long-cycling anodes in lithium ion batteries.J Mater Chem A2014;2:11683

[10]

Zhang X,Yang JL.High-sulfur loading and single ion-selective membranes for high-energy and durable decoupled aqueous batteries.Adv Mater2024;36:e2307298

[11]

Ye C,Chao D.Electron-state confinement of polysulfides for highly stable sodium-sulfur batteries.Adv Mater2020;32:e1907557

[12]

Chao D,Ye C.An electrolytic Zn-MnO2 Battery for high-voltage and scalable energy storage.Angew Chem Int Ed2019;58:7823-8

[13]

Xu C,Du H.Energetic zinc ion chemistry: the rechargeable zinc ion battery.Angew Chem Int Ed2012;124:957-9

[14]

Manalastas W Jr,Verma V,Yuan D.Water in rechargeable multivalent-ion batteries: an electrochemical pandora’s box.ChemSusChem2019;12:379-96

[15]

Zhang J,Tang Y,Li Y.Zinc-air batteries: are they ready for prime time?.Chem Sci2019;10:8924-9 PMCID:PMC6984393

[16]

Wang F,Gao T.Highly reversible zinc metal anode for aqueous batteries.Nat Mater2018;17:543-9

[17]

Li Q,Wang D,Zhi C.“Soft shorts” hidden in zinc metal anode research.Joule2022;6:273-9

[18]

Ding J,Gao H.In situ lattice tunnel distortion of vanadium trioxide for enhancing zinc ion storage.Adv Energy Mater2021;11:2100973

[19]

Shahali H,Rafieerad A,Amiri A.Progress and prospects of zinc-sulfur batteries.Energy Storage Mater2024;65:103130

[20]

Xu C,Du H.Energetic zinc ion chemistry: the rechargeable zinc ion battery.Angew Chem Int Ed2012;51:933-5

[21]

Deng S,Tie Z,Song L.Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries.Angew Chem Int Ed2020;59:22002-6

[22]

Luo H,Wang F.Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage.ACS Nano2020;14:7328-37

[23]

Zhu K,Huang K.A high-voltage activated high-erformance cathode for aqueous Zn-ion batteries.Energy Storage Mater2021;38:473-81

[24]

Wang S,Zhang X.Non-metal ion co-insertion chemistry in aqueous Zn/MnO2 batteries.Angew Chem Int Ed2021;60:7056-60

[25]

Zeng Y,Meng Y.Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery.Adv Mater2017;29:1700274

[26]

Xiong T,Wu H.Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery.Adv Energy Mater2019;9:1803815

[27]

Ma L,Long C.Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction.Adv Energy Mater2019;9:1902446

[28]

Pan W,Zhao X.High-performance aqueous Na-Zn hybrid ion battery boosted by “water-in-gel” electrolyte.Adv Funct Mater2021;31:2008783

[29]

Zou Y,Du Q.A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion.Nat Commun2021;12:170 PMCID:PMC7794333

[30]

Zhang SJ,Wu H,Ye C.Protein interfacial gelation toward shuttle-free and dendrite-free Zn-iodine batteries.Adv Mater2024;36:e2404011

[31]

Wang C,Liang J.Activating and stabilizing a reversible four electron redox reaction of I-/I+ for aqueous Zn-iodine battery.Angew Chem Int Ed2024;63:e202403187

[32]

Hu T,Yang Y.Development of inverse-opal-structured charge-deficient Co9S8@nitrogen-doped-carbon to catalytically enable high energy and high power for the two-electron transfer I-/I+ electrode.Adv Mater2024;36:e2312246

[33]

Wang W,Cao Z.Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries.Adv Mater2021;33:e2103617

[34]

Zhao Q,Luo Z.High-capacity aqueous zinc batteries using sustainable quinone electrodes.Sci Adv2018;4:eaao1761 PMCID:PMC5837429

[35]

Ning J,Xie D.Unveiling phenoxazine’s unique reversible two-electron transfer process and stable redox intermediates for high-performance aqueous zinc-ion batteries.Angew Chem Int Ed2024;63:e202319796

[36]

Chang G,Hao Y.Bifunctional electrolyte additive with redox mediation and capacity contribution for sulfur cathode in aqueous Zn-S batteries.Chem Eng J2023;457:141083

[37]

Li Y,Cai Y.Designing advanced aqueous zinc-ion batteries: principles, strategies, and perspectives.Energy Environ Mater2022;5:823-51

[38]

Ning J,Mei S.Constructing binder- and carbon additive-free organosulfur cathodes based on conducting thiol-polymers through electropolymerization for lithium-sulfur batteries.ChemSusChem2022;15:e202200434 PMCID:PMC9401019

[39]

Yang G,Lv Z.Keggin-type polyoxometalate-based crown ether complex for lithium-sulfur batteries.Chem Commun2023;59:788-91

[40]

Ma Z,Jiang X.[Mo3S13]2- as bidirectional cluster catalysts for high-performance Li-S batteries.Catal Sci Technol2022;12:3431-5

[41]

Du M,Pei C.High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries.Angew Chem Int Ed2022;61:e202209350

[42]

Zhao Y,Li X.Initiating a reversible aqueous Zn/sulfur battery through a “liquid film”.Adv Mater2020;32:e2003070

[43]

Li W,Jiang K.A low cost aqueous Zn-S battery realizing ultrahigh energy density.Adv Sci2020;7:2000761 PMCID:PMC7709974

[44]

Chen Z,Zhu J.Highly reversible positive-valence conversion of sulfur chemistry for high-voltage zinc-sulfur batteries.Adv Mater2024;36:e2402898

[45]

Sun Q,Shu T.Lithium-induced oxygen vacancies in MnO2@MXene for high-performance zinc-air batteries.ACS Appl Mater Interfaces2024;16:12781-92

[46]

Zhong Y,Liu P.A function-separated design of electrode for realizing high-performance hybrid zinc battery.Adv Energy Mater2020;10:2002992

[47]

Patel D.Minireview on aqueous zinc-sulfur batteries: recent advances and future perspectives.Energy Fuels2023;37:10897-914

[48]

Licht S.Aqueous solubilities, solubility products and standard oxidation-reduction potentials of the metal sulfides.J Electrochem Soc1988;135:2971-5

[49]

Yang M,Xiao J.Boosting Cathode activity and anode stability of Zn-S batteries in aqueous media through cosolvent-catalyst synergy.Angew Chem Int Ed2022;61:e202212666

[50]

Liu J,Zhao R.Sulfur-based aqueous batteries: electrochemistry and strategies.J Am Chem Soc2021;143:15475-89

[51]

Wu X,Xu Y.Rechargeable iron-sulfur battery without polysulfide shuttling.Adv Energy Mater2019;9:1902422

[52]

Zhang H,Luo G.Redox catalysis promoted activation of sulfur redox chemistry for energy-dense flexible solid-state Zn-S battery.ACS Nano2022;16:7344-51

[53]

Liu D,Zhong Y.A durable ZnS cathode for aqueous Zn-S batteries.Nano Energy2022;101:107474

[54]

Sonigara KK,Mayorga-Martinez CC.Flexible aqueous Zn-S battery based on an S-decorated Ti3C2Tx cathode.NPJ 2D Mater Appl2023;7:411

[55]

Menzel J,Galek P.Operando monitoring of activated carbon electrodes operating with aqueous electrolytes.Energy Storage Mater2022;49:518-28

[56]

Zampardi G.Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries.Nat Commun2022;13:687 PMCID:PMC8814157

[57]

Xin W,Zhang L,Yan Z.Turning the byproduct Zn4(OH)6SO4·xH2O into a uniform solid electrolyte interphase to stabilize aqueous Zn anode.ACS Mater Lett2021;3:1819-25

[58]

Zhang L,Xin W,Yan Z.Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode.Energy Stor Mater2022;44:408-15

[59]

Feng C,Zhou Q.Recent advances in aqueous zinc-sulfur batteries: overcoming challenges for sustainable energy storage.J Mater Chem A2023;11:18029-45

[60]

Li W,Ma Y.Phosphorus-doped carbon sheets decorated with SeS2 as a cathode for aqueous Zn-SeS2 battery.Chem Eng J2021;420:129920

[61]

Cui M,Mo F,Huang Y.Ultra-high-capacity and dendrite-free zinc-sulfur conversion batteries based on a low-cost deep eutectic solvent.ACS Appl Mater Interfaces2021;13:54981-9

[62]

Zhou T,Liu M,Fan Z.Regulating uniform nucleation of ZnS enables low-polarized and high stable aqueous Zn-S batteries.Mater Today Energy2022;27:101025

[63]

Xu Z,Gou W.The key role of concentrated Zn(OTF)2 electrolyte in the performance of aqueous Zn-S batteries.Chem Commun2022;58:8145-8

[64]

Zhang W,Ma J.Bidirectional atomic iron catalysis of sulfur redox conversion in high-energy flexible Zn-S battery.Adv Funct Mater2023;33:2210899

[65]

Guo Y,Chen Y.Hybrid electrolyte design for high-performance zinc-sulfur battery.Small2023;19:e2207133

[66]

Liu M,Xu Z.Highly microporous carbon from enteromorpha for high-performance aqueous zinc-chalcogen (S, SeS2) batteries.Batteries Supercaps2023;6:e202300145

[67]

Cai P,Chen J,Lu Z.High-energy density aqueous alkali/acid hybrid Zn-S battery.Adv Energy Mater2023;13:2301279

[68]

Wang K,Zhang Z,Fu F.Pitch-derived 3D amorphous carbon encapsulated sulfur-rich cathode for aqueous Zn-S batteries.Sci China Chem2023;66:2711-8

[69]

Wu W,Lin L,Sun X.A dual-mediator for a sulfur cathode approaching theoretical capacity with low overpotential in aqueous Zn-S batteries.Energy Environ Sci2023;16:4326-33

[70]

Patel D,Sharma Y,Sharma AK.Hybrid electrolyte with biomass-derived carbon host for high-performance aqueous Zn-S battery.Chem Eng J2024;479:147722

[71]

Amiri A,Naraghi M.Multifunctional quasi-solid-state zinc-sulfur battery.ACS Nano2023;17:1217-28

[72]

Hei P,Liu C.Facilitating the electrochemical oxidation of ZnS through iodide catalysis for aqueous zinc-sulfur batteries.Angew Chem Int Ed2024;63:e202316082

[73]

Zhang Y,Wu Z.A tellurium-boosted high-areal-capacity zinc-sulfur battery.Adv Sci2024;11:e2308580 PMCID:PMC11187902

[74]

Wang M,Ding T.Simultaneous acceleration of sulfur reduction and oxidation on bifunctional electrocatalytic electrodes for quasi-solid-state Zn-S batteries.Sci China Chem2024;67:1531-8

[75]

Zhao S,Zhang J.Biomass-derived porous carbon with single-atomic cobalt toward high-performance aqueous zinc-sulfur batteries at room temperature.J Energy Chem2024;95:325-35

[76]

Mehta S,Singh M.Unleashing ultrahigh capacity and lasting stability: aqueous zinc-sulfur batteries.Adv Energy Mater2024;14:2401515

[77]

Ren Y,Zhang Y,Li Z.Trace selenium doping for improving the reaction kinetics of ZnS cathode for aqueous Zn-S batteries.Small2024;20:e2402466

[78]

Li J,Ren Y,Li Z.Constructing a raincoat-like protective layer on sulfur cathode for aqueous Zn-S batteries.Energy Storage Mater2024;70:103541

[79]

Chai J,Li Q,Zhang W.Recent breakthroughs in the bottleneck of cathode materials for Li-S batteries.Energy Fuels2021;35:15455-71

[80]

Eftekhari A.Cathode materials for lithium-sulfur batteries: a practical perspective.J Mater Chem A2017;5:17734-76

[81]

Shao J,Zhang L,Zheng H.Core-shell sulfur@polypyrrole composites as high-capacity materials for aqueous rechargeable batteries.Nanoscale2013;5:1460-4

[82]

Zhang Y,Zhang S.A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li-S batteries.InfoMat2021;3:790-803

[83]

Wang T,Zhong J.3D holey graphene/polyacrylonitrile sulfur composite architecture for high loading lithium sulfur batteries.Adv Energy Mater2021;11:2100448

[84]

Mu Y,Wu BK.3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries.Nat Commun2023;14:4205 PMCID:PMC10349079

[85]

Liu P,Liu J.Biomass-derived porous carbon materials for advanced lithium sulfur batteries.J Energy Chem2019;34:171-85

[86]

Gopalakrishnan A.Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications.J Power Sources2020;480:228830

[87]

Zhang G,Wang L.Recent advances of biomass derived carbon-based materials for efficient electrochemical energy devices.J Mater Chem A2022;10:9277-307

[88]

Seh ZW,Zhang Q.Designing high-energy lithium-sulfur batteries.Chem Soc Rev2016;45:5605-34

[89]

Zhang J,Xing Y,Li T.A review of cathode for lithium-sulfur batteries: progress and prospects.J Porous Mater2023;30:1807-19

[90]

Zhang Y.Materials design and mechanistic understanding of tellurium and tellurium-sulfur cathodes for rechargeable batteries.ACC Chem Res2024;57:2500-11

[91]

Lu K,Gao S,Chen J.Manipulating polysulfide conversion with strongly coupled Fe3O4 and nitrogen doped carbon for stable and high capacity lithium-sulfur batteries.Adv Funct Mater2019;29:1807309

[92]

Zhou G,Jin Y.Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries.Proc Natl Acad Sci USA2017;114:840-5 PMCID:PMC5293031

[93]

Tian H,Tian H.Single-atom catalysts for high-energy rechargeable batteries.Chem Sci2021;12:7656-76 PMCID:PMC8188463

[94]

Guerfi A,Charest P.Improved electrolytes for Li-ion batteries: mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance.J Power Sources2010;195:845-52

[95]

Sui Y.Electrolyte interphases in aqueous batteries.Angew Chem Int Ed2024;63:e202312585

[96]

Yu X,Li Z.Unlocking dynamic solvation chemistry and hydrogen evolution mechanism in aqueous zinc batteries.J Am Chem Soc2024;146:17103-13

[97]

Zou Y,Shen L.Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes.Energy Environ Sci2022;15:5017-38

[98]

Shi J,Bao J.“Water-in-deep eutectic solvent” electrolytes for high-performance aqueous Zn-ion batteries.Adv Funct Mater2021;31:2102035

[99]

Wang D,Zhao Y.Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation.Adv Energy Mater2022;12:2102707

[100]

Li X.Oxidative dissolution of metals in organic solvents.Chem Rev2021;121:4506-30 PMCID:PMC8154329

[101]

Wu SC,Chen YZ.High-performance rechargeable aluminum-selenium battery with a new deep eutectic solvent electrolyte: thiourea-AlCl3.ACS Appl Mater Interfaces2020;12:27064-73

[102]

Xie X,Lu X.Electrodeposition of Zn and Cu-Zn alloy from ZnO/CuO precursors in deep eutectic solvent.Appl Surf Sci2016;385:481-9

[103]

Huang J,Du Y,Liu Y.Ultrastable zinc anodes enabled by anti-dehydration ionic liquid polymer electrolyte for aqueous Zn batteries.ACS Appl Mater Interfaces2021;13:4008-16

[104]

Ruan P,Lu B,Zhou J.Design strategies for high-energy-density aqueous zinc batteries.Angew Chem Int Ed2022;61:e202200598

[105]

He Z,Yang Y.Electrode and electrolyte co-energy-storage electrochemistry enables high-energy Zn-S decoupled batteries.Small2024;20:e2402325

[106]

Amiri A,Sellers R,Naraghi M.Fully integrated design of a stretchable kirigami-inspired micro-sized zinc-sulfur battery.J Mater Chem A2023;11:10788-97

[107]

Liu W,Kong B.Flexible and stretchable energy storage: recent advances and future perspectives.Adv Mater2017;29:1603436

PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

/