Tuning the ion-transport nanochannels of sulfonated poly(ether ether ketone) membranes for efficient aqueous organic redox flow battery

Amaia Lejarazu-Larrañaga , Eduardo Sánchez-Díez , Yan Zhang , Ivan Bobrikov , Nagore Ortiz-Vitoriano , Nerea Marquinez , Fengjing Jiang

Energy Materials ›› 2025, Vol. 5 ›› Issue (5) : 500044

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (5) :500044 DOI: 10.20517/energymater.2024.122
Article

Tuning the ion-transport nanochannels of sulfonated poly(ether ether ketone) membranes for efficient aqueous organic redox flow battery

Author information +
History +
PDF

Abstract

Sulfonated poly(ether ether ketone) (SPEEK) is a potential low-cost candidate to replace fluorine-based Nafion membranes in some redox flow batteries (RFBs). In this work, the ionic conductivity of SPEEK membranes is increased almost fourfold by conducting a well-controlled irreversible swelling of the membrane. Atomic Force Microscopy images and small-angle X-ray Scattering curves effectively demonstrate that the size of the hydrophilic nanochannels in the swollen membranes can be precisely tuned by simply varying the solvent concentration. The modified SPEEK membrane (SPEEK45) is applied in an aqueous organic/organometallic RFB, using 1,1′-bis(3-sulfonatopropyl)-4,4′-bipyridinium (SPr2V) and ferrocyanide salts as anodic and cathodic materials, respectively. The boosted conductivity of the modified SPEEK membrane enables higher energy efficiencies than in the case of the Nafion membrane (N212) at various current densities. In addition, a 200-cycle charging-discharging test is carried out to evaluate the long-term stability of the modified SPEEK membrane. The results show that SPEEK45 exhibits higher energy efficiency than N212 (70.8% and 65.4% at 60 mA cm-2, respectively), with comparable capacity retention. The well-controlled swelling method proves to be a promising and innovative membrane technology for promoting ion conductivities of membranes used for various RFBs.

Keywords

Flow battery / non-fluorinated / membrane / ion-transport channels / aqueous organic redox flow battery

Cite this article

Download citation ▾
Amaia Lejarazu-Larrañaga, Eduardo Sánchez-Díez, Yan Zhang, Ivan Bobrikov, Nagore Ortiz-Vitoriano, Nerea Marquinez, Fengjing Jiang. Tuning the ion-transport nanochannels of sulfonated poly(ether ether ketone) membranes for efficient aqueous organic redox flow battery. Energy Materials, 2025, 5(5): 500044 DOI:10.20517/energymater.2024.122

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sánchez-Díez E,Guarnieri M.Redox flow batteries: status and perspective towards sustainable stationary energy storage.J Power Sources2021;481:228804

[2]

European Chemicals Agency. Annex XV-restriction report proposal for per- and polyfluoroalkyl substances (PFASs). Helsinki, Finland: European Chemicals Agency; 2023. Available from: https://echa.europa.eu/restrictions-under-consideration/-/substance-rev/72301/term [Last accessed on 19 Feb 2025]

[3]

Minke C.Economics of vanadium redox flow battery membranes.J Power Sources2015;286:247-57

[4]

Janoschka T,Martin U.An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials.Nature2015;527:78-81

[5]

Thiam BG,Vaudreuil S.An overview on the progress and development of modified sulfonated polyether ether ketone membranes for vanadium redox flow battery applications.High Perform Polym2022;34:131-48

[6]

Mahimai B, Sivasubramanian G, Sekar K, Kannaiyan D, Deivanayagam P. Sulfonated poly(ether ether ketone): efficient ion-exchange polymer electrolytes for fuel cell applications-a versatile review.Mater Adv2022;3:6085-95

[7]

Schwenzer B,Kim S,Liu J.Membrane development for vanadium redox flow batteries.ChemSusChem2011;4:1388-406

[8]

Zhang L,Li E,Zhang S.Sulfonated poly(ether ether ketone) membrane for quinone-based organic flow batteries.J Membr Sci2019;584:246-53

[9]

Chu B.Small-angle X-ray scattering of polymers.Chem Rev2001;101:1727-61

[10]

Yang B.Comparison of the small angle X-ray scattering study of sulfonated poly(etheretherketone) and Nafion membranes for direct methanol fuel cells.J Power Sources2006;153:29-35

[11]

Mendil-Jakani H,Mareau VH.Optimization of hydrophilic/hydrophobic phase separation in sPEEK membranes by hydrothermal treatments.Phys Chem Chem Phys2017;19:16013-22

[12]

Qian P,Zhang Y,Song M.Review and perspectives of sulfonated poly(ether ether ketone) proton exchange membrane for vanadium flow batteries.Energy Fuels2023;37:17681-707

[13]

Brush D,Schlick S.Phase separation in sulfonated poly(ether ether ketone) (SPEEK) ionomers by spin probe ESR: effect of the degree of sulfonation and water content.Macromolecules2015;48:637-44

[14]

Yuan Z,Hu J,Cao J.Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium.Phys Chem Chem Phys2014;16:19841-7

[15]

Xiong P,Chen Y,Yu G.A chemistry and microstructure perspective on ion-conducting membranes for redox flow batteries.Angew Chem Int Ed2021;60:24770-98

[16]

Ye C,Wang A.Long-life aqueous organic redox flow batteries enabled by amidoxime-functionalized ion-selective polymer membranes.Angew Chem Int Ed2022;61:e202207580 PMCID:PMC9541571

[17]

Tan R,Ye C.Thin film composite membranes with regulated crossover and water migration for long-life aqueous redox flow batteries.Adv Sci2023;10:e2206888 PMCID:PMC10369228

[18]

Chen D,Li X.Hierarchical porous poly (ether sulfone) membranes with excellent capacity retention for vanadium flow battery application.J Power Sources2017;353:11-8

[19]

Che X,Ren X.Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery.J Membr Sci2020;611:118359

[20]

Wang F,Jiang F.Dual-porous structured membrane for ion-selection in vanadium flow battery.J Power Sources2021;506:230234

[21]

Zhang J,Yang F.Tailoring porous structure in non-ionic polymer membranes using multiple templates for low-cost iron-lead single-flow batteries.Energy Mater2024;4:400042

[22]

Zhai S,Lu Z.Highly ion selective composite proton exchange membranes for vanadium redox flow batteries by the incorporation of UiO-66-NH2 threaded with ion conducting polymers.J Membr Sci2022;662:121003

[23]

Xia Y,Cao H.Rigidly and intrinsically microporous polymer reinforced sulfonated polyether ether ketone membrane for vanadium flow battery.J Membr Sci2022;653:120517

[24]

Jiang F,Wang F,Liao W.Finely controlled swelling: a shortcut to construct ion-selective channels in polymer membranes.Polymer2021;225:123793

[25]

Jiang F.Ion-selective membranes fabricated using finely controlled swelling of non-ionic fluoropolymer for redox flow batteries.Batteries2023;9:545

[26]

Luo J,Debruler C.Unprecedented capacity and stability of ammonium ferrocyanide catholyte in pH neutral aqueous redox flow batteries.Joule2019;3:149-63

[27]

Jiang M,Mahesh JM. Hydrophilic hollow fiber ultrafiltration membranes that include a hydrophobic polymer and a method of making these membranes. WO2002076593A1. Available from: https://patents.google.com/patent/WO2002076593A1/en [Last accessed on 19 Feb 2025]

[28]

Gierke TD,Wilson FC.The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies.J Polym Sci Polym Phys Ed1981;19:1687-704

[29]

Xue R,Wang F.Towards cost-effective proton-exchange membranes for redox flow batteries: a facile and innovative method.J Power Sources2020;449:227475

[30]

Hu B,Luo J.A stable, low permeable TEMPO catholyte for aqueous total organic redox flow batteries.Adv Energy Mater2022;12:2102577

[31]

Kingsbury RS,Flotron S.Microstructure determines water and salt permeation in commercial ion-exchange membranes.ACS Appl Mater Interfaces2018;10:39745-56

[32]

Krowne CM.Physics, electrochemistry, chemistry, and electronics of the vanadium redox flow battery by analyzing all the governing equations.Phys Chem Chem Phys2024;26:2823-62

[33]

Ye C,Breakwell C.Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes.Nat Commun2022;13:3184 PMCID:PMC9177609

[34]

Zhou X,Zhong Y,Jiang F.Asymmetric porous membranes with ultra-high ion selectivity for vanadium redox flow batteries.J Membr Sci2020;595:117614

[35]

Garcia-Vasquez W,Larchet C,Pismenskaya N.Evolution of anion-exchange membrane properties in a full scale electrodialysis stack.J Membr Sci2013;446:255-65

[36]

Folkertsma L,Czakkel O.Synchrotron SAXS and impedance spectroscopy unveil nanostructure variations in redox-responsive porous membranes from poly(ferrocenylsilane) poly(ionic liquid)s.Macromolecules2017;50:296-302

[37]

He G,Zhao J.Nanostructured ion-exchange membranes for fuel cells: recent advances and perspectives.Adv Mater2015;27:5280-95

[38]

Choi S.Ex situ aging effect on sulfonated poly(ether ether ketone) membrane: hydration-dehydration cycling and hydrothermal treatment.J Energy Chem2022;70:583-92

[39]

Oh K.Engineered membrane-electrode interface for hydrocarbon-based polymer-electrolyte-membrane fuel cells via solvent-vapor-annealed deposition.ACS Appl Nano Mater2019;2:3857-63

[40]

Kreuer KD.On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells.J Membr Sci2001;185:29

[41]

Mensharapov RM,Spasov DD,Fateev VN.SAXS investigation of the effect of freeze/thaw cycles on the nanostructure of nafion® membranes.Polymers2022;14:4395 PMCID:PMC9607153

[42]

Mendil-Jakani H,Legrand PM,Gonon L.A new interpretation of SAXS peaks in sulfonated poly(ether ether ketone) (sPEEK) membranes for fuel cells.Phys Chem Chem Phys2014;16:11228-35

[43]

Caianiello C,Turek T.Characterization of an aqueous flow battery utilizing a hydroxylated tetracationic viologen and a simple cationic ferrocene derivative.Adv Energy Sustain Res2023;4:2300077

[44]

Potash RA,Conte S.On the benefits of a symmetric redox flow battery.J Electrochem Soc2016;163:A338-44

[45]

Song Y,Yan C.Uncovering ionic conductivity impact towards high power vanadium flow battery design and operation.J Power Sources2020;480:229141

[46]

Rubio-Presa R,Borlaf M,Sanz R.Addressing practical use of viologen-derivatives in redox flow batteries through molecular engineering.ACS Mater Lett2023;5:798-802 PMCID:PMC9993555

[47]

Jin S,Vina-Lopez L.Near neutral pH redox flow battery with low permeability and long-lifetime phosphonated viologen active species.Adv Energy Mater2020;10:2000100

[48]

Gubler L.Membranes and separators for redox flow batteries.Curr Opin Electrochem2019;18:31-6

[49]

Austing JG, Nunes Kirchner C, Komsiyska L, Wittstock G. Layer-by-layer modification of Nafion membranes for increased life-time and efficiency of vanadium/air redox flow batteries.J Membr Sci2016;510:259-69

[50]

Lai YY,Zhu Y.Polymeric active materials for redox flow battery application.ACS Appl Polym Mater2020;2:113-28

PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

/