A novel SnC/graphene heterostructure as an efficient host material for Li- and Na-ion batteries: computational insight
Javed Rehman , Mehwish. K. Butt , Adel El-marghany , Zhipeng Li , Guochun Yang
Energy Materials ›› 2025, Vol. 5 ›› Issue (5) : 500046
A novel SnC/graphene heterostructure as an efficient host material for Li- and Na-ion batteries: computational insight
The rapid growth of technologies has influenced our daily lives in building efficient energy storage systems such as lithium-ion batteries (LIBs) for various electric automobiles and portable electronic devices. Graphite, the commercial anode material for LIBs, has several limitations including low lithium storage capacity (372 mAh g-1), low power rate capability, and sluggish charging for applications in grids and heavy electric vehicles. Herein, we propose a novel SnC/graphene heterostructure (SnC/G-H) as a potential anode material for LIBs and sodium-ion batteries, supported by first-principles calculations. The graphene layer in the SnC/G-H model provides high mechanical stability and electrical conductivity, enhancing device application and potentially solving the structural issues of the SnC monolayer. SnC/G-H serves as an excellent Li/Na host material, offering low average voltages (0.34-0.39 V), impressive Li/Na storage capacities of 870 mAh g-1 (exceeding those of pristine SnC and graphite), and minimal activation energy barriers of 0.043/0.079 eV, which promote efficient lithiation/delithiation and sodiation/desodiation processes. These enthralling findings indicate that the SnC/G-H could serve as an efficient host material for rechargeable LIBs and sodium-ion batteries.
Heterostructure / graphene / charging/discharging / first-principles calculation / Li/Na-ion batteries
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
Butt M, Muhammad Zeeshan H, An Dinh V, Zhao Y, Wang S, Jin K. Monolayer SnC as anode material for Na ion batteries.Comput Mater Sci2021;197:110617 |
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
/
| 〈 |
|
〉 |