Understanding Mg-ion deposition behavior on MgBi alloy in solid-state form

Qian Wang , Hao Li , Ting Xu , Yungui Chen , Yigang Yan

Energy Materials ›› 2025, Vol. 5 ›› Issue (2) : 500022

PDF
Energy Materials ›› 2025, Vol. 5 ›› Issue (2) :500022 DOI: 10.20517/energymater.2024.102
Article

Understanding Mg-ion deposition behavior on MgBi alloy in solid-state form

Author information +
History +
PDF

Abstract

Mg alloys have frequently been studied as anodes for Mg-ion batteries due to their high specific capacity and low electrochemical potential. In the present study, we investigated the interfacial stability of MgBi alloy anodes with solid-state electrolytes. The bubble-like solid electrolyte interface (SEI) was observed between the MgBi alloy anode and Mg(BH4)2·1.9NH3 solid-state electrolyte, leading to the unstable Mg stripping/plating on the MgBi alloy. Theoretical simulations suggest that the bubble-like SEI originates from the different Mg-ion dynamics on the eutectic region (e.g., Mg + Mg3Bi2 phases) and the Mg matrix. The addition of MgBr2·2NH3 nanoparticles in Mg(BH4)2·1.9NH3 suppresses the formation of a bubble-like SEI through the etching effect of Br- ions. Consequently, interfacial resistance is lowered and the interfacial stability is drastically enhanced, e.g., Mg stripping/plating for over 1,200 cycles at 0.1 mA cm-2 with a low overpotential around 0.05 V.

Keywords

MgBi alloy anode / solid-state electrolyte / Mg-ion battery / interfacial stability

Cite this article

Download citation ▾
Qian Wang, Hao Li, Ting Xu, Yungui Chen, Yigang Yan. Understanding Mg-ion deposition behavior on MgBi alloy in solid-state form. Energy Materials, 2025, 5(2): 500022 DOI:10.20517/energymater.2024.102

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao Q,Zhao C.Designing solid-state electrolytes for safe, energy-dense batteries.Nat Rev Mater2020;5:229-52

[2]

Unemoto A,Orimo S.Complex hydrides for electrochemical energy storage.Adv Funct Mater2014;24:2267-79

[3]

Higashi S,Aoki M.A novel inorganic solid state ion conductor for rechargeable Mg batteries.Chem Commun2014;50:1320-2

[4]

Ruyet R, Berthelot R, Salager E, Florian P, Fleutot B, Janot R. Investigation of Mg(BH4)(NH2)-based composite materials with enhanced Mg2+ ionic conductivity.J Phys Chem C2019;123:10756-63

[5]

Le Ruyet R,Berthelot R.Mg3(BH4)4(NH2)2 as inorganic solid electrolyte with high Mg2+ ionic conductivity.ACS Appl Energy Mater2020;3:6093-7

[6]

Roedern E,Remhof A.Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries.Sci Rep2017;7:46189 PMCID:PMC5384009

[7]

Burankova T,Maniadaki AE.Dynamics of the coordination complexes in a solid-state Mg electrolyte.J Phys Chem Lett2018;9:6450-5

[8]

Kisu K,Inukai M,Takagi S.Magnesium borohydride ammonia borane as a magnesium ionic conductor.ACS Appl Energy Mater2020;3:3174-9

[9]

Yan Y,Jørgensen M.The mechanism of Mg2+ conduction in ammine magnesium borohydride promoted by a neutral molecule.Phys Chem Chem Phys2020;22:9204-9

[10]

Yan Y,Jo̷rgensen M,Skibsted J.Ammine magnesium borohydride nanocomposites for all-solid-state magnesium batteries.ACS Appl Energy Mater2020;3:9264-70

[11]

Yan Y,Burankova T.Fast room-temperature Mg2+ conductivity in Mg(BH4)2·1.6NH3-Al2O3 nanocomposites.J Phys Chem Lett2022;13:2211-6

[12]

Wang Q,Zhang R.Oxygen vacancies boosted fast Mg2+ migration in solids at room temperature.Energy Storage Mater2022;51:630-7

[13]

Zhang J,Chen X,Yan X.Single-atom Ni supported on TiO2 for catalyzing hydrogen storage in MgH2.J Am Chem Soc2024;146:10432-42

[14]

Liu F,Ban J.Recent advances based on Mg anodes and their interfacial modulation in Mg batteries.J Magnes Alloys2022;10:2699-716

[15]

Son SB,Harvey SP.An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes.Nat Chem2018;10:532-9

[16]

Tang K,Dong S.A stable solid electrolyte interphase for magnesium metal anode evolved from a bulky anion lithium salt.Adv Mater2020;32:e1904987

[17]

Chinnadurai D,Kumar S,Li Y.A passivation-free solid electrolyte interface regulated by magnesium bromide additive for highly reversible magnesium batteries.Nano Lett2023;23:1564-72

[18]

Chen T,Canepa P.Ionic transport in potential coating materials for Mg batteries.Chem Mater2019;31:8087-99

[19]

Hebié S,Leprêtre JC.Electrolyte based on easily synthesized, low cost triphenolate-borohydride salt for high performance Mg(TFSI)2-glyme rechargeable magnesium batteries.ACS Appl Mater Interfaces2017;9:28377-85

[20]

Wang Q,Deng H,Yan Y.Enhanced interface stability of ammine magnesium borohydride by in situ decoration of MgBr2·2NH3 nanoparticles.Chem Commun2023;59:6726-9

[21]

Xu X,Chen B.Revealing the magnesium-storage mechanism in mesoporous bismuth via spectroscopy and Ab-initio simulations.Angew Chem Int Ed Engl2020;59:21728-35

[22]

Chen X,Tong F,Cao P.Electrochemical performance of Mg-Sn alloy anodes for magnesium rechargeable battery.Electrochimica Acta2021;398:139336

[23]

Ikhe AB,Prabakar SJR,Sohn K.3Mg/Mg2 Sn anodes with unprecedented electrochemical performance towards viable magnesium-ion batteries.J Mater Chem A2020;8:14277-86

[24]

Wang L,Kumar H.High-rate and long cycle-life alloy-type magnesium-ion battery anode enabled through (de) magnesiation-induced near-room-temperature solid-liquid phase transformation.Adv Energy Mater2019;9:1902086

[25]

Chai X,Zhang T.Ternary Mg alloy-based artificial interphase enables high-performance rechargeable magnesium batteries.Energy Storage Mater2024;70:103460

[26]

Singh N,Ling C,Mizuno F.A high energy-density tin anode for rechargeable magnesium-ion batteries.Chem Commun2013;49:149-51

[27]

Kravchyk KV,Caputo R.Colloidal bismuth nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights.ACS Nano2018;12:8297-307

[28]

Jung SC.Fast magnesium ion transport in the Bi/Mg3Bi2 two-phase electrode.J Phys Chem C2018;122:17643-9

[29]

Yaghoobnejad Asl H,Kumar H,Shenoy VB.In situ dealloying of bulk Mg2Sn in Mg-ion half cell as an effective route to nanostructured Sn for high performance Mg-ion battery anodes.Chem Mater30:1815-24

[30]

Kresse G.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B1996;54:11169-86

[31]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[32]

Kresse G.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys Rev B1999;59:1758-75

[33]

Monkhorst HJ.Special points for brillouin-zone integrations.Phys Rev B1976;13:5188-92

[34]

Henkelman G,Jónsson H.A climbing image nudged elastic band method for finding saddle points and minimum energy paths.J Chem Phys2000;113:9901-4

[35]

Nayeb-hashemi AA.The Bi-Mg (Bismuth-Magnesium) system.Bull Alloy Phase Diagrams1985;6:528-33

[36]

Pradhan B,Paul S,Acharya S.Solution phase synthesis of large-area ultra-thin two dimensional layered Bi2Se3: role of Cu-intercalation and substitution.Mater Res Express2019;6:124005

[37]

Xu X,Chao D.Synchrotron X-ray spectroscopic investigations of in-situ-formed alloy anodes for magnesium batteries.Adv Mater2022;34:e2108688

[38]

Li Y,Zhang C.Grain-boundary-rich triphasic artificial hybrid interphase toward practical magnesium metal anodes.Adv Funct Mater2023;33:2210639

[39]

Ding MS,Behm RJ,Giffin GA.Dendrite growth in Mg metal cells containing Mg(TFSI)2/glyme electrolytes.J Electrochem Soc2018;165:A1983-90

[40]

Yoo HD,Bolotin IL.Degradation mechanisms of magnesium metal anodes in electrolytes based on (CF3SO2)2N- at high current densities.Langmuir2017;33:9398-406

[41]

Dewitt S,Zavadil K.Computational examination of orientation-dependent morphological evolution during the electrodeposition and electrodissolution of magnesium.J Electrochem Soc2016;163:A513-21

[42]

Zhang Y,Zhao W.Defect-free metal-organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode.Adv Mater2022;34:e2108114

[43]

Wan B,Zhao X.Three-dimensional magnesiophilic scaffolds for reduced passivation toward high-rate Mg metal anodes in a noncorrosive electrolyte.ACS Appl Mater Interfaces2020;12:28298-305

PDF

61

Accesses

0

Citation

Detail

Sections
Recommended

/